Creating secure communication channel with LoRa technology

2025;
: сс. 111 - 116
1
Національний університет «Львівська політехніка», Україна
2
Національний університет «Львівська політехніка», Україна
3
Університет Суецького каналу, Єгипет

This article addresses secure information transmission using LoRa technology in peer-to-peer mode, without relying on LoRaWAN. Such communication is vital in areas lacking centralized network infrastructure, such as rural, remote, emergency, or combat situations, where confidential data must be exchanged over several kilometers. The study explores methods for secure data transmission with LoRa devices, focusing on improving efficiency by optimizing encoding for higher data rates within limited byte sizes. Measurements of the maximum transmission rate and longest successful distance have been provided. A message- type-based encoding method has been proposed to optimize data transmission between the sender and receiver under limited channel bandwidth conditions.

  1. Foubert, B., & Mitton, N. (2020). Long-Range Wireless Radio Technologies: A Survey. Future Internet, 12(1), 13.https://doi.org/10.3390/fi12010013
  2. Tataria, H., Haneda, K., Molisch, A. F., et al. (2021). Standardization of propagation models for terrestrial cellular systems: A historical perspective. International Journal of Wireless Information Networks, 28, 20-44.https://doi.org/10.1007/s10776-020-00500-9
  3. Natgunanathan, I., Fernando, N., Loke, S. W., & Weerasuriya, C. (2023). Bluetooth Low Energy Mesh: Applications, Considerations and Current State-of-the-Art. Sensors, 23(4), 1826.https://doi.org/10.3390/s23041826
  4. Jouhari, M., Saeed, N., Alouini, M., & Amhoud, E. M. (2023). A survey on scalable LORAWAN for massive IoT: recent advances, potentials, and challenges. IEEE Communications Surveys & Tutorials, 25(3), 1841-1876.https://doi.org/10.1109/COMST.2023.3274934
  5. Bonilla, V., Campoverde, B., & Yoo, S. G. (2023). A Systematic Literature Review of LoRaWAN: Sensors and Applications. Sensors, 23(20), 8440.https://doi.org/10.3390/s23208440
  6. Ertürk, M. A., Aydın, M. A., Büyükakkaşlar, M. T., & Evirgen, H. (2019). A Survey on LoRaWAN Architecture, Protocol and Technologies. Future Internet, 11(10), 216.https://doi.org/10.3390/fi11100216
  7. Azevedo, J. A., & Mendonça, F. (2024). A critical review of the propagation models employed in LoRa systems. Sensors, 24(12), 3877.https://doi.org/10.3390/s24123877
  8. Azim, A. W., Bazzi, A., Bomfin, R., Shubair, R., & Chafii, M. (2023). Layered Chirp Spread Spectrum Modulations for LP- WANs. IEEE Transactions on Communications, 72(3), 1671- 1687.https://doi.org/10.1109/TCOMM.2023.3331019
  9. Mayer, K. M., Cottatellucci, L., & Schober, R. (2023). Optimal antenna placement for two-antenna near-field wireless power transfer. ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2135-2140.https://doi.org/10.1109/ICC45041.2023.10278773
  10. Hikmaturokhman, A., Ramadhani, E., & Wulandari, A. (2025). Designing Data Communication Security System on LoRA Network Using PRESENT Algorithm. Jurnal Telematika, 19, 72-81.https://doi.org/10.61769/telematika.v19i2.674
  11. Chi, D. V., Nguyen, K. D., Nguyen, L. T., Le, D. N., Luu, Q. H., & Huynh, S. T. (2022). Applying AES algorithm for secure data transmission between Sensor node and LoRa Gateway to Web Server. Journal of Mining and Earth Sciences, 63(1), 105-114.https://doi.org/10.46326/JMES.2022.63(1).10
  12. Sanchez-Iborra, R., Sánchez-Gómez, J., Pérez, S., Fernández, P. J., Santa, J., Hernández-Ramos, J. L., & Skarmeta, A. F. (2018). Enhancing LoRaWAN Security through a Lightweight and Authenticated Key Management Approach. Sensors, 18(6), 1833.https://doi.org/10.3390/s18061833
  13. Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2018). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1), 1-7.https://doi.org/10.1016/j.icte.2017.12.005
  14. Elshabrawy, T., & Robert, J. (2018). The Impact of ISM Interference on LoRa BER Performance. IEEE Global Conference on Internet of Things (GCIoT), 1-5.https://doi.org/10.1109/GCIoT.2018.8620142
  15. Wiyadi, E., Setiadi, R. N., & Umar, L. (2020). Effect of vegetation profile and air data rate on packet loss performance of LORA E32-30DBm 433 MHz as a wireless data transmission. Journal of Physics Conference Series,1655(1),012015.https://doi.org/10.1088/1742-6596/1655/1/012015
  16. Thaenkaew, P., Quoitin, B., & Meddahi, A. (2023). Leveraging Larger AES Keys in LoRaWAN: A Practical Evaluation of Energy and Time Costs. Sensors, 23(22), 9172.https://doi.org/10.3390/s23229172
  17. Cheng, Y., Saputra, H., Goh, L. M., & Wu, Y. (2018). Secure smart metering based on LoRa technology. IEEE International Conference on Identity, Security, and Behavior Analysis (ISBA), 1-8.https://doi.org/10.1109/ISBA.2018.8311466
  18. Mathe, S. E., Kondaveeti, H. K., Vappangi, S., Vanambathina, S. D., & Kumaravelu, N. K. (2024). A comprehensive review on applications of Raspberry Pi. Computer Science Review, 52, 100636.https://doi.org/10.1016/j.cosrev.2024.100636
  19. Smith, S. (2024). Programming GPIO PINs. Apress eBooks 163-187.https://doi.org/10.1007/979-8-8688-0137-2_8
  20. Lata, K., Chhabra, S., & Saini, S. (2021). Hardware- Software Co-Design framework for data encryption in image processing systems for the Internet of things environment. IEEE Consumer Electronics Magazine, 11(4), 92-97.https://doi.org/10.1109/MCE.2021.3115999
  21. Lemire, D. (2021, September). Unicode at Gigabytes per Second. In International Symposium on String Processing and Information Retrieval (pp. 13-18). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-030-86692-1_2
  22. Celaya-Echarri, M., Azpilicueta, L., Lopez-Iturri, P., Picallo, I., Aguirre, E., Astrain, J. J., Villadangos, J., & Falcone, F. (2020). Radio wave propagation and WSN deployment in complex utility tunnel environments. Sensors, 20(23), 6710.https://doi.org/10.3390/s20236710