Physics-Informed Particle Swarm Optimization for Collision-Aware Swarm Navigation

2025;
: cc. 197 - 201
1
Львівський національний університет імені Івана Франка
2
Львівський національний університет імені Івана Франка
3
Ivan Franko National University of Lviv
4
Capgemini Engineering, Cambridge, Massachusetts, United States

This paper presents an approach to modeling the movement of a multi-agent system in a two-dimensional space using a modified Particle Swarm Optimization (PSO) algorithm, adapted to account for the physical properties of the agents. The standard PSO, originally designed for solving optimization problems through swarm behavior, has been extended to simulate the motion of physical objects with defined mass, velocity, and inter-agent interactions. To ensure physically plausible motion and prevent collisions between agents, hybrid methods have been proposed that combine classical PSO with inter-particle potential functions. Trajectory planning and control over the direction and speed of agent movement have been governed by the modified PSOs, while collision avoidance is achieved through the influence of repulsive potential fields. Numerical simulations have been conducted to analyze the collective behavior of the swarm.

[1] Shami, T. M., El-Saleh, A. A., Alswaitti, M.,  Al- Tashi, Q., Summakieh, M. A., & Mirjalili, S. (2022). Particle swarm optimization: A comprehensive survey. IEEE Access, 10, 10031–10061. https://doi.org/10.1109/access.2022.3142859.

[2] Shami, T. M., El-Saleh, A. A., Alswaitti, M., Al-Tashi, Q., Summakieh, M. A., & Mirjalili, S. (2022). Particle swarm optimization: A comprehensive survey. IEEE Access, 10, 10031–10061.      DOI: https://doi.org/10.1109/access.2022.3142859.

[3]     Hilli, A. A., Al-Ibadi, M., Alfadhel, A. M., Abdulshaheed, S. H., & Hadi, A. H. (2021). Optimal path finding in stochastic quasi-dynamic environments using particle swarm optimization. Expert Systems With Applications, 186, 115706. DOI: https://doi.org/10.1016/ j.eswa.2021.115706.

[4]     Lin, S., Liu, A., Wang, J., & Kong, X. (2023). An intelligence-based hybrid PSO-SA for mobile robot path planning in warehouse. Journal of Computa- tional Science, 67, 101938. https://doi.org/10.1016/ j.jocs.2022.101938

[5] Lin, C., Yu, D., & Lin, S. (2024). Allocation strategy optimization using repulsion-enhanced quantum particle swarm optimization for multi-auv systems. Journal of Marine Science and Engineering, 12(12), 2270. https://doi.org/10.3390/jmse12122270

[6] Zhai, C., & Cao, Z.  (2020).  GPU-accelerated repulsive particle swarm optimization for parameter retrieval of single sphere from angularly distributed scattered light. Optik, 220, 165222. https://doi.org/ 10.1016/j.ijleo.2020.165222

[7]    Zhu, S., Zhou, S., Shang, J., Wang, L., & Qiang, B. (2020). A multiion particle swarm optimization algorithm based on repellent and attraction forces. Concurrency and Computation: Practice and Experience. DOI: https://doi.org/10.1002/cpe.5979.

[8] Liu, Q., Li, J., Ren, H., & Pang, W. (2022). All particles driving particle swarm optimization: Superior particles pulling plus inferior particles pushing. Knowledge-Based Systems, 108849. DOI: https://doi.org/10.1016/ j.knosys.2022.108849.

[9]  Benmachiche, A., Derdour, M., Kahil, M. S., Ghanem, M. C., & Deriche, M. (2025). Adaptive hybrid PSO–APF algorithm for advanced path planning in next-generation autonomous robots. Sensors, 25(18), 5742. DOI: https://doi.org/10.3390/s25185742.

[10] Paez, D., Romero, J. P., Noriega, B., Cardona, G. A., & Calderon, J. M. (2021). Distributed particle swarm optimization for multi-robot system in search and rescue operations. IFAC-PapersOnLine, 54(4), 1–6. DOI: https://doi.org/10.1016/j.ifacol.2021.10.001.

[11] Parker, L., Butterworth, J., & Luo, S. (2019, 17 July). Fly safe: Aerial swarm robotics using force field particle swarm optimisation. https://arxiv.org/. DOI: https://arxiv.org/pdf/1907.07647.

[12] Meng, Q., Chen, K., & Qu, Q. (2024). PPSwarm: Multi- uav path planning based on hybrid PSO in complex scenarios.          Drones,                          8(5),               192.           DOI: https://doi.org/10.3390/drones8050192.

[13] Wan, Z., Gan, L., Zhang, L., & Shu, Y. (2025). Multi-ship collision avoidance decision-making based on cooperative game and particle swarm optimization algorithm. Ocean Engineering, 341,      122537.   DOI: https://doi.org/10.1016/j.oceaneng.2025.122537.