Пропонується аналогова нейронна схема, яка швидко ідентифікує K серед N нейронів, де 1 £ K < N , вхідні сигнали яких є більшими, ніж у решти N - K нейронів. Для N вхідних сигналів така схема складається з N жорсткообмежувальних нейронів прямого поширення і одного нейрона зворотного зв’язку, який використовується для визначення динамічного зсуву вхідних сигналів. Запропонована схема відрізняється незначною обчислювальною складністю, простотою схемотехнічної реалізації, високою роздільною здатністю і властивістю збереження впорядкування сигналів. Схема здатна обробляти сигнгали, розміщені в будь-якому скінченному діапазоні. Функціонування схеми аналізується за допомогою комп’ютерного моделювання.
1. Filippov A.F. Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, 1988. 2. Cichocki A. and Unbehauen R. Neural Networks for Optimization and Signal Processing, John Wiley and Sons, 1993. 3. Tymoshchuk P. and Kaszkurewicz E. A Winner-take-all circuit based on second order Hopfield neural networks as building blocks // in Proc. Int. Joint Conf. Neural Networks, vol. II, Portland, OR, 2003, pp. 891-896. 4. Tymoshchuk P. and Kaszkurewicz E. A winner-take all circuit using neural networks as building blocks. Neurocomputing, vol. 64, 2005, pp. 375-396. 5. Lipmann R.P. An introduction to computing with neural nets. IEEE ASSP Mag., April 1987. 6. Lippmann R.P., Gold B. and Malpass M.L. A comparison of Hamming and Hopfield neural nets for pattern classificatіon // Technical Report TR-769, MIT Lincoln Laboratory, 1987. 7. Kwon T.M. and Zervakis M. A parallel sorting network without comparators: A neural-network approach // in Proc. Int. Joint Conf. Neural networks, vol. 1, pp. 701-706, 1992. 8. Bihn L.N. and Chong H.C. A neural-network contention controller for packet switching networks // IEEE Trans. Neural Networks, vol. 6, pp. 1402- 1408, November 1993. 9. Urahama K. and Nagao T. K-Winner-take-all circuit with 0(n) complexity // IEEE Trans. Neural Networks, vol. 6, pp. 776-778, 1995. 10. Yen J.C.,.Guo J.I and Chen H.-C. A new kWinners-take all neural network and its array architecture // IEEE Trans. Neural Networks, vol. 9, pp. 901-912, September 1998. 11. Calvert B.D. and Marinov C.A. Another k-Winner-take-all analog neural network // IEEE Trans. Neural Networks, vol. 11, № 4, pp. 829-838, July 2000. 12. Majani E., Erlanson R. and Abu-Mostafa Y. On the k-Winners-take-all network // in Advances in Neural Informaton Processing Systems I, D.S.Touetzky, Ed. San Mateo, CA: Morgan Kaufman, p. 634-642, 1989. 13. Grossberg S. Non-Linear Neural Networks: Principles, Mechanisms, and Architectures // Neural Networks, vol. 1, pp. 17-61, 1988. 14. Wolfe W.J., Mathis D., Anderson C., Rothman J., Gotler M., Bragy G., Walker R.., Duane G. and Alaghband G. K-Winner networks // IEEE Trans. Neural Networks, vol. 2, pp. 310-315, 1991. 15. Perfetti R. On the robust design of k-winners-take-all networks // IEEE Transactions on Circits and Systems-II: Analog and Digital Signal Processing, vol. 42, № 1, pp. 55-58, 1995. 16. Seiler G. and A.Nossek J. Winner-take-all cellular neural networks // IEEE Transactions on Circits and Systems-II: Analog and Digital Signal Processing, vol. 40, № 3, pp. 184-190, 1993. 17. Yen J.C., Guo J.I. and Chen H.-C. A new k-Winners-take all neural network and its array architecture // IEEE Trans. Neural Networks, vol. 9, pp. 901-912, September 1998. 18. Calvert B.D. and Marinov C.A. Another k-Winner-take-all analog neural network // IEEE Trans. Neural Networks, vol. 11, № 4, pp. 829-838, July 2000. 19. Marinov C.A. and Calvert B.D. Performance analysis for a K-winners-take-all analog neural network: basic theory // IEEE Trans. Neural Networks, vol. 14, № 4, pp. 766-780, July 2003. 20. Hopfield J.J. Neurons with graded response have collective computational properties like those of two-state neurons // in Proceedings of the Natonal Academy of Sciences, №81, pp. 3088-3092, 1984. 21. Lazzaro J., Lyckebusch S., Mahowald M.A. and Mead C.A. Winner-take-all networks of 0(n) complexity // in Advances in Neural Informaton Processing Systems I, D.S.Touetzky, Ed. Los Altos, CA: Morgan Kaufmann, p. 703-711, 1989. 22. Yang J.-F. and Chen C.M. A dynamic K-winners-take-all neural network // IEEE Trans. on Syst., Man. and Cyb.-Part B:Cyb., vol. 27, № 3, pp. 523-526, 1997. 23. Mead C.A. Analog VLSI and Neural Systems // Reading, Addison-Wesley, 1989.