Робочі режими імпульсної нейронної мережі типу “К-winners-take-all”

2018;
: сс. 125 - 129
1
Національний університет «Львівська політехніка», кафедра систем автоматизованого проектування

Описано нейронну мережу (НМ) неперервного часу типу “K-winners-take-all” (KWTA), яка ідентифікує К найбільші з-поміж N входів, де керуючий сигнал 1 <= K < N. Мережа описується рівнянням стану із розривною правою частиною і вихідним рівнянням. Рівняння стану містить шлейф імпульсів, які описуються сумою дельта-функцій Дірака. Проаналізовано існування та єдиність робочих режимів мережі. Головною перевагою мережі порівняно з іншими близькими аналогами є розширення обмежень на швидкість збіжності до робочих режимів. Отримані теоретичні результати ілюструються прикладом комп’ютерного моделювання, який демонструє ефективність мережі.

  1. E. Majani, R. Erlanson, and Y. Abu-Mostafa, “On the k-winners-take-all network,” in Advances in Neural Information Processing Systems 1, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1989, pp. 634–642.
  2. J. Wang, “Analysis and design of a k-winners-takeall network with a single state variable and the Heaviside step activation function,” IEEE Trans. Neural Netw., vol. 21, no. 9, pp. 1496–1506, Sept. 2010.
  3. P. V. Tymoshchuk, “A simplified continuous-time model of analogue K-winners-take-all neural circuit”, in Proc. XI Int. Conf. “The Experience of Designing and Application of CAD Systems in Microelectronics”, Polyana-Svalyava, Ukraine, February 23–25, 2011, pp. 121–125.
  4. R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Acoustics, Speech and Signal Processing Magazine, vol. 3, no. 4, pp. 4–22, Apr. 1987.
  5. P. Tymoshchuk and E. Kaszkurewicz, ”A winner-take all circuit using neural networks as building blocks,” Neurocomputing, vol. 64, pp. 375–396, Mar. 2005.
  6. P. Tymoshchuk, “Parallel rank-order filtering based on impulse Kwinners-take-all neural network,” Computer Systems and Networks, No 881, pp. 160–165, 2017.
  7. J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winner-take-all networks of O(N) complexity,” in Advances in Neural Information Processing Systems 1, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1989, pp. 703–711.
  8. B. Sekerkiran and U. Cilingiroglu, “A CMOS K-winners-take-all circuits with 0(N) complexity,” IEEE Trans. Circuits Syst. II, vol. 46, no. 1, pp. 1–5, Jan. 1999.
  9. A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing. New York, NY, USA: Wiley, 1993.
  10. R. C. O’Reilly and Y. Munakata, Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press, 2000.
  11. W. Maass, “Neural computation with winner-take-all as the only nonlinear operation,” in Advances in Information Processing Systems, vol.
  12. S. A. Solla, T. K. Leen, and K.-R. Mueller, Eds. Cambridge, MA: MIT Press, 2000, pp. 293–299.