ПЕРЕДОВІ ПРОЦЕСИ ОКИСНЕННЯ НА ОСНОВІ НАТРІЮ ПЕРКАРБОНАТУ. ОГЛЯД.

1
Національний університет „Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Національний університет “Львівська політехніка”

Розглянуто переваги натрію перкарбонату як носія “твердого гідрогену пероксиду”, порівняно з гідрогену пероксидом у рідкій фазі. Наведено методи гомогенної (активація ультрафіолетовим випромінюванням, електророзрядною плазмою, в ультразвуковому полі, йонами металів) та гетерогенної (природними та штучно синтезованими мінералами, наночастинками заліза, іммобілізованими на допоміжні матеріали, наночастинками сполук заліза, біметалевими нанокомпозитами, фероценом) активації натрію перкарбонату та їх застосування у передових процесах окиснення органічних сполук на його основі. Встановлено, що кисле середовище є ефективнішим для гомогенної активації натрію перкарбонату йонами металів (зокрема, Fe2+), а нейтральне або лужне середовище є більш придатним для гетерогенної активації натрію перкарбонату.

  1. Pimentel, J. A. I., Dong, C. -D., Garcia-Segura, S., Abarca, R. R. M., Chen, C. -W., & de Luna, M. D. G. (2021). Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation. Science of the Total Environment, 781, 146411. doi: 10.1016/j.scitotenv.2021.146411
  2. Du, C. H., & Liu, J. R. (2014). A new utilization approach of natural soda ash: to manufacture sodium percarbonate. Latin American Applied Research, 44 (2), 179-183. Retrieved from http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-0793201...
  3. Pesman, E., Imamoglu, S., Kalyoncu, E. E., & Kırcı, H. (2014). The effects of sodium percarbonate and perborate usage on pulping and flotation deinking instead of hydrogen peroxide. BioResources, 9 (1), 523-536. doi: 10.15376/biores.9.1.523-536
  4. Zhang, B. -T., Kuang, L., Teng, Y., Fan, M., & Ma, Y. (2021). Application of percarbonate and peroxymonocarbonate in decontamination technologies. Journal of Environmental Sciences, 105, 100-115. doi: 10.1016/j.jes.2020.12.031
  5. Forwood, J. M., Harris, J. O., Landos, M., & Deveney, M. R. (2015). Histological evaluation of sodium percarbonate exposure on the gills of rainbow trout. Diseases of Aquatic Organisms, 114, 263-268. doi: 10.3354/dao02861
  6. Yu, X., Kamali, M., Aken, P. V., Appels, L., Van der Bruggen, B., & Dewil, R. (2021). Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos. Journal of Water Process Engineering, 39, 101721. doi: 10.1016/j.jwpe.2020.101721
  7. Więckol-Ryk, A., Białecka, B., & Thomas, M. (2020). Effect of green oxidizing agent on inhibition of Escherichia coli present in livestock wastes. Water, Air, and Soil Pollution, 231 (9), 466-481. doi: 10.1007/s11270-020-04824-3
  8. Srisaikham, S., Isobe, N., & Suksombat, W. (2017). The inhibitory effect of sodium thiocyanate and sodium percarbonate ratios on microorganism growth in raw milk samples as an effective treatment to extend milk quality during storage. Songklanakarin Journal of Science and Technology, 39 (1), 77-89. doi: 10.14456/sjst-psu.2017.9
  9. Thoo, R., Siuda, W., & Jasser, I. (2020). The effects of sodium percarbonate generated free oxygen on Daphnia – Implications for the management of harmful algal blooms. Water, 12, 1304-1315. doi: 10.3390/w12051304
  10.  Cheng, X., Lian, J., Ren, Z., Hou, C., Jin, Y., Zhang, L., …Liang, H. (2021). Coupling sodium percarbonate (SPC) oxidation and coagulation for membrane fouling mitigation in algae-laden water treatment. Water Research, 204, 117622. doi: 10.1016/j.watres.2021.117622
  11.  Iskander, S. M., Novak, J., Brazil, B. & He, Z. (2017). Percarbonate oxidation of landfill leachate towards removal of ultraviolet quenchers. Environmental Science: Water Research & Technology, 3 (6), 1162-1170. doi: 10.1039/C7EW00343A
  12.  Febriana, T. A., Khairiza, M. R., Maulina, R., Utami, T. S., Arbianti, R., & Hermansyah, H. (2020). Concentration optimization of sodium percarbonate as buffering catholyte on stacked microbial desalination cell by utilizing tofu wastewater as a substrate. Engineering Journal, 24 (4), 217-228. doi: 10.4186/ej.2020.24.4.217
  13.  Liu, X., He, S., Yang, Y., Yao, B., Tang, Y., Luo, L., …Zhou, Y. (2021). A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water. Environmental Research, 200, 111371. doi: 10.1016/j.envres.2021.111371
  14.  Ling, X., Deng, J., Ye, C., Cai, A., Ruan, S., Chen, M., & Li, X. (2021). Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization. Science of the Total Environment, 799, 149382. doi: 10.1016/j.scitotenv.2021.149382 
  15.  Dangi, M. B., Urynowicz, M. A., Schultz, C. L., & Budhathoki, S. (2022). A comparison of the soil natural oxidant demand exerted by permanganate, hydrogen peroxide, sodium persulfate, and sodium percarbonate. Environmental Challenges, 7, 100456. doi: 10.1016/j.envc.2022.100456
  16.  Sablas, M. M., de Luna, M. D. G., Garcia-Segura, S., Chen, C. -W., Chen, C. -F., & Dong, C. -D. (2020). Percarbonate mediated advanced oxidation completely degrades recalcitrant pesticide imidacloprid: Role of reactive oxygen species and transformation products. Separation and Purification Technology, 250, 117269. doi: 10.1016/j.seppur.2020.117269
  17.  Hung, C. -M., Chen, C. -W., Huang, C. -P., Tsai, M. -L., Wu, C. -H., Lin, Y. -L., …Dong, C. -D. (2022). Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. Journal of Hazardous Materials, 422, 126922. doi: 10.1016/j.jhazmat.2021.126922
  18.  Mohammadi, S., Moussavi, G., Yaghmaeian, K., & Giannakis, S. (2022). Development of a percarbonate-enhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chemical Engineering Journal, 431 (2), 134064. doi: 10.1016/j.cej.2021.134064
  19.  Yue-Hua, Z., Chun-Mei, X., & Chang-Hong, G. (2011). Application sodium percarbonate to oxidative degradation trichloroethylene contamination in groundwater. Procedia Environmental Sciences, 10 (B), 1668-1673. doi: 10.1016/j.proenv.2011.09.262
  20.  Ohura, R., Katayama, A., & Takagishi, T. (1992). Degradation of sulfonated azo dyes with sodium percarbonate. Textile Research Journal, 62 (9), 552-556. doi: 10.1177/004051759206200909
  21.  Zhang, J., Wang, X., & Dong, C. (2019). Decolorization of triphenylmethane dyes and dye-doped silica microspheres using sodium percarbonate. Desalination and Water Treatment, 153, 312-320. doi: 10.5004/dwt.2019.23904
  22.  Nalliah, R. E. (2019). Reaction of FD&C Blue 1 with sodium percarbonate: multiple kinetics methods using an inexpensive light meter. Journal of Chemical Education, 96, 1453-1457. doi: 10.1021/acs.jchemed.8b00589
  23.  Viisimaa, M., & Goi, A. (2014). Use of hydrogen peroxide and percarbonate to treat chlorinated aromatic hydrocarbon-contaminated soil. Journal of Environmental Engineering and Landscape Management, 22 (1), 30-39. doi: 10.3846/16486897.2013.804827
  24.  Zhang, Y. -H., Sun, Y. -G., Yue, L. -H., & Guo, C. -H. (2013). Degradation of polycyclic aromatic hydrocarbons contamination in groundwater by sodium percarbonate oxidation. Asian Journal of Chemistry, 25 (11), 5917-5920. doi: 10.14233/ajchem.2013.14047
  25.  Gao, J., Duan, X., O’Shea, K., & Dionysiou, D. D. (2020). Degradation and transformation of bisphenol A in UV/sodium percarbonate: Dual role of carbonate radical anion. Water Research, 171, 115394. doi: 10.1016/j.watres.2019.115394
  26.  Qiu, Z., Rao, G., Wang, L., & Wang, L. (2021). Photo-assisted degradation of naphthalene by sodium percarbonate system. Advances in Environmental Protect, 11 (3), 497-505. doi: 10.12677/aep.2021.113055  
  27.  Ortiz-Marin, A. D., Bandala, E. R., Ramírez, K., Moeller-Chávez, G., Pérez-Estrada, L., Ramírez-Pereda, B., & Amabilis-Sosa, L. E. (2022). Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation. Reaction Kinetics, Mechanisms and Catalysis, 2022-01-08. doi: 10.1007/s11144-021-02152-z
  28.  Li, L., Guo, R., Zhang, S., & Yuan, Y. (2022). Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species. Environmental Research, 207, 112176. doi: 10.1016/j.envres.2021.112176
  29.  Pieczykolan, B., Płonka, I., & Barbusiński, K. (2016). Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate. Architecture Civil Engineering Environment, 9 (4), 135-140. doi: 10.21307/acee-2016-060
  30.  Kozak, J., & Włodarczyk-Makuła, M. (2018). The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation. Civil and Environmental Engineering Reports, 28 (2), 124-139. doi: 10.2478/ceer-2018-0024
  31.  Kozak, J., & Włodarczyk-Makuła, M. (2019). The use of sodium carbonate-hydrogen peroxide (2/3) in the modified Fenton reaction to degradation PAHs in coke wastewater. Proceedings, 16 (1), 44-48. doi: 10.3390/proceedings2019016044   
  32.  Wang, T., Jia, H., Guo, X., Xia, T., Qu, G., Sun, Q., & Yin, X. (2018). Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chemical Engineering Journal, 346, 65-76. doi: 10.1016/j.cej.2018.04.024
  33.  Tang, S., Yuan, D., Rao, Y., Li, M., Shi, G., Gu, J., & Zhang, T. (2019). Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. Journal of Hazardous Materials, 366, 669-676. doi: 10.1016/j.jhazmat.2018.12.056
  34.  Geng, T., Yi, C., Yi, R., Yang, L., & Nawaz, M. I. (2020). Mechanism and degradation pathways of bisphenol A in aqueous solution by strong ionization discharge. Water, Air, and Soil Pollution, 231 (4), 185-201. doi: 10.1007/s11270-020-04563-5
  35.  Lin, X., He, J., Xu, L., Fang, Y., & Rao, G. (2020). Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollution and Treatment, 8 (3), 66-76. doi: 10.12677/wpt.2020.83010
  36.  Eslami, A., Mehdipour, F., Lin, K. -Y. A., Maleksari, H. S., Mirzaei, F., & Ghanbari, F. (2020). Sono-photo activation of percarbonate for the degradation of organic dye: The effect of water matrix and identification of by-products. Journal of Water Process Engineering, 33, 100998. doi: 10.1016/j.jwpe.2019.100998
  37.  Ma, J., Yang, X., Jiang, X., Wen, J., Li, J., Zhong, Y., …Wang, Y. (2020). Percarbonate persistence under different water chemistry conditions. Chemical Engineering Journal, 389, 123422. doi: 10.1016/j.cej.2019.123422
  38.  Tang, P., Jiang, W., Lu, S., Zhang, X., Xue, Y., Qiu, Z., & Sui, Q. (2017). Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environmental Technology, 40 (1), 1-9. doi: 10.1080/09593330.2017.1393012
  39.  Liang, H., Cui, M., Su, R., Liu, Z., Zhang, J., & Huang, R. (2020). Rapid degradation of p-chlorophenol by the activated percarbonate. Chemical Engineering Transactions, 81, 235-240. doi: 10.3303/CET2081040
  40.  Farooq, U., Sajid, M., Shan, A., Wang, X., & Lyu, S. (2021). Role of cysteine in enhanced degradation of trichloroethane under ferrous percarbonate system. Chemical Engineering Journal, 423, 130221. doi: 10.1016/j.cej.2021.130221
  41.  Fu, X., Wei, X., Zhang, W., Yan, W., Wei, P., & Lyu, S. (2022). Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply, 22 (1), 208-219. doi: 10.2166/ws.2021.278
  42.  Li, L., Huang, J., Hu, X., Zhang, S., Dai, Q., Chai, H., & Gu, L. (2019). Activation of sodium percarbonate by vanadium for the degradation of aniline in water: Mechanism and identification of reactive species. Chemosphere, 215, 647-656. doi: 10.1016/j.chemosphere.2018.10.047
  43.  Ishizaki, U., Takahashi, I., Sato, K., & Yoshimune, K. (2021). 2-[bis (carboxymethyl) amino] propanoic acid-chelated copper chelate enhances bacterial elimination by sodium percarbonate. Biocontrol Science, 26 (1), 9-15. doi: 10.4265/bio.26.9
  44.  Li, Y., Dong, H., Li, L., Xiao, J., Xiao, S., & Jin, Z. (2021). Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Research, 202, 117451. doi: 10.1016/j.watres.2021.117451
  45.  Danish, M., Gu, X., Lu, S., Zhang, X., Fu, X., Xue, Y., …Qureshi, A. S. (2016). The effect of chelating agents on enhancement of 1,1,1-trichloroethane and trichloroethylene degradation by Z-nZVI-catalyzed percarbonate process. Water, Air, and Soil Pollution, 227 (9), 301-314. doi: 10.1007/s11270-016-3005-x
  46.  Danish, M., Gu, X., Lu, S., Xu, M., Zhang, X., Fu, X., …Nasir, M. (2016). Role of reactive oxygen species and effect of solution matrix in trichloroethylene degradation from aqueous solution by zeolite-supported nano iron as percarbonate activator. Research on Chemical Intermediates, 42 (9), 6959-6973. doi: 10.1007/s11164-016-2509-8
  47.  Farooq, U., Danish, M., Lu, S., Naqvi, M., Gu, X., Fu, X., …Nasir, M. (2017). Synthesis of nZVI@reduced graphene oxide: an efficient catalyst for degradation of 1,1,1-trichloroethane (TCA) in percarbonate system. Research on Chemical Intermediates, 43 (5), 3219-3236. doi: 10.1007/s11164-016-2821-3
  48.  Dai, Z., Liang, L., Wang, M., & Du, E. (2019). Degradation of DDTs by nano Fe3O4/sodium percarbonate and their degradation products. Acta Scientiae Circumstantiae, 39 (4), 1183-1190. doi: 10.13671/j.hjkxxb.2018.0449
  49.  Danish, M., Gu, X., Lu, S., Ahmad, A., Naqvi, M., Farooq, U., …Xue, Y. (2017). Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite. Chemical Engineering Journal, 308, 396-407. doi: 10.1016/j.cej.2016.09.051
  50.  Danish, M., Gu, X., Lu, S., Brusseau, M. L., Ahmad, A., Naqvi, M., …Miao, Z. (2017). An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite. Applied Catalysis A: General, 531, 177-186. doi: 10.1016/j.apcata.2016.11.001
  51.  Farooq, U., Danish, M., Lu, S., Brusseau, M. L., Naqvi, M., Fu, X., …Qiu, Z. (2017). Efficient transformation in characteristics of cations supported-reduced graphene oxide nanocomposites for the destruction of trichloroethane. Applied Catalysis A: General, 544, 10-20. doi: 10.1016/j.apcata.2017.07.007
  52.  Xu, J., Wang, L., Chen, J. -B., Xu, F., Wang, K. -Q., Hou, Z. -F., & Huang, T. -Y. (2020). Degradation of AO7 with magnetic Fe3O4-CuO heterogeneous catalyzed sodium percarbonate system. Environmental Science, 41 (4), 1734-1742. doi: 10.13227/j.hjkx.201908117
  53.  Wang, Q., Tian, S., & Ning, P. (2014). Ferrocene-catalyzed heterogeneous Fenton-like degradation of Methylene blue: Influence of initial solution pH. Industrial & Engineering Chemistry Research, 53, 6334-6340. doi: 10.1021/ie500115j
  54.  Lin, K. -Y. A., Lin, J. -T., & Lin, Y. -F. (2017). Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water. Journal of the Taiwan Institute of Chemical Engineers, 78, 144-149. doi: 10.1016/j.jtice.2017.05.017
  55.  Zhang, C., Dong, Y., Li, B., & Li, F. (2018). Comparative study of three solid oxidants as substitutes of H2O2 used in Fe (III)-oxalate complex mediated Fenton system for photocatalytic elimination of reactive azo dye. Journal of Cleaner Production, 177, 245-253. doi: 10.1016/j.jclepro.2017.12.211