Reducing energy consumption and reducing co2 emissions of coke plant

Автори: 
Leonid Ulyev, Stanislav Boldyryev, MihailVasilyev, Temirkhan Zebeshev, Alisher Khusanov

The efficient energy use of Coke Oven Plant is considered in this paper. The main objective is the reduction of energy consumption and reducing CO2 emissions per production unit by use of waste heat for various needs of production site demands. The considered process consumes the external hot utilities 25.4 MW and cold utilities 24.9 MW. The use of waste heat for district heating and hot water supply allow reducing the external cold utilities by 23.5 MW. This heat can be used for heating of 1,869,825.6 m3 in apartment buildings, municipal facilities, shopping malls and etc. The use of waste heat from flue gases for electricity production allows obtaining additionally about 7.5 MW of power that can be utilized for production needs and exported outside. The provided case studies show the pathway for an efficient retrofit of coke production and most profitable ways for investment.

[1] Volume of industrial products sold, by types of
activity for January-October 2015, State Statistics
Service of Ukraine, http://www.ukrstat.gov.ua/
accessed 16.12.2015.
[2] Ukraine policy review. 2006, International Energy
Agency, France. http://www.iea.org/publications/
freepublications/publication/ukraine2006.pdf accessed
17.11.2015.
[3] Kaufman S. I., Kirbaba V. V., German K. E.,
Borisenko A. L., Malysh A. S., 2013, Ekologicheskie
problemy industrial'nyh megapolisov, materialy 10
mezhdunarodnoj nauchno-prakticheskoj konferenciivystavki.
Doneck – Avdeevka – July 3–5, 2013, Doneck,
DonNTU Ministerstvo obrazovaniya i nauki Ukrainy,
23–27. (In Ukrainian).
[4] Guang-yu MA, CAI Jiu-j, ZENG Wen-wei, DONG Hui,
2012, Analytical Research on Waste Heat Recovery and
Utilization of China’s Iron & Steel Industry, Energy
Procedia, 14, 1022–1028.
[5] Kang S., Li H., Lei J., Liu L., Cai B, Zhang G.,
2015, A new utilization approach of the waste heat
with mid-low temperature in the combined heating
and power system integrating heat pump, Applied
Energy, 160, 15, 185–193.
[6] Oluleye G., Jobson M., Smith R., 2015, A hierarchical
approach for evaluating and selecting waste heat
utilization opportunities, 90, 1, 5–23.
[7] Gabrielyan D. A., Semenov V. V., Uteshev A. A.,
Fedyaeva O. A. Shubenkova E. G., 2015 Heat waste
use for additional electricity generating using
magnets thermal power plants, Procedia Engineering
113, 198–202.
[8] Kiss A. A., Landaeta S. J. F., Ferreira C. A. I., 2012,
Towards energy efficient distillation technologies –
Making the right choice, Energy, Energy 47, 531–542.
[9] H. Hjaranson et al. Waste heat utilization from a
submerged arc furnace producing ferrosilicon. – The
12th International Ferroalloys Congress, Finland, June
6–9, 2010, p. 735–748.
[10] Fang H., Xi J., Zhu K., Su Y., Jiang Y., 2013, Industrial
waste heat utilization for low temperature district
heating, Energy Policy, 62, 236–246.
[11] Ziemele J., Pakere I., Blumberga D., 2016, The future
competitiveness of the non-Emissions Trading Scheme
district heating systems in the Baltic States, Applied
Energy, 162, Pages 1579–1585.
[12] Prando D., Renzi M., Gasparella A., Baratieri M., 2015,
Monitoring of the energy performance of a district
heating CHP plant based on biomass boiler and ORC
generator, Applied Thermal Engineering, 79, 98–107.
[13] Bermúdez J. M., Ferrera-Lorenzo N., Luque S., Arenillas
A., Menéndez J. A., 2013 New process for producing
methanol from coke oven gas by means of CO2
reforming. Comparison with conventional process, Fuel
Processing Technology, 115, 215–221.
[14] Lin H., Jin H, Gao L., Zhang N., 2014, A polygeneration
system for methanol and power production based on
coke oven gas and coal gas with CO2 recovery, Energy,
Vol. 74, Pages 174–180.
[15] Tovazshneanski L., Kapustenko P., Ulyev L., Boldyryev
S., Djelali V., Rubchevcky V., Volokh V., 2001, The
Heat Integration in Process of Producing the Pitch From
Coal Tar. Proceedings of 4th Conference Process
Integration, Modelling and Optimisation for energy
Saving and Pollution Reduction, 425–430.
[16] Tovazhnyansky L., Kapustenko P., Ulyev L., Boldyryev S.,
2011, Heat integration improvement for benzene
hydrocarbons extraction from coke-oven gas. Chemical
Engineering Transaction, 25, 153–158.
[17] Tovazhnyansky L., Ulyev L., Vasilyev M., 2012, Heat
integration of cleaning coke oven gas from benzene
hydrocarbon process, using “Hint” and “Aspen Hysys”
software. Integrated Technologies and Energy
Conservation, 3, 3–7.
[18] Ulyev L. M., Kapustenko P. A, Vasilyev M. A,
Boldyryev S. A. 2013, Total Site Integration for. Coke
Oven Plant, Chemical Engineering Transaction, 35,
235–240.
[19] Ul’ev L. M., Vasil’ev M. A., 2015, Heat and Power
Integration of Processes for the Refinement of Coking
Products, Theoretical Foundations of Chemical
Engineering, 49, 676–687.
[20] Biegler, L. T., Grossmann, I. E., Westerberg, A. W.,
1997, Systematic methods for chemical process design,
796.
[21] Yang Y., Zhang S., Xiao Y., 2015, An MILP (mixed
integer linear programming) model for optimal design of
district-scale distributed energy resource systems,
Energy, 90, 1901–1915.
[22] Holtbruegge J., Kuhlmann H., Lutze P., 2015, Process
analysis and economic optimization of intensified
process alternatives for simultaneous industrial scale
production of dimethyl carbonate and propylene
glycol, Chemical Engineering Research and Design,
93, 411–431.
[23] Dhole V. R., Linnhoff B., 1993, Total site targets for
fuel, co-generation, emissions, and cooling, Computers
and Chemical Engineering, 17, 101–109.
[24] Fodor Z., Klemeš J. J., Varbanov P. S., WalmsleyM. R. W.,
Atkins M. J., Walmsley T. G., 2012, Total site targeting with
stream specific minimum temperature difference, Chemical
Engineering Transactions, 29, 409–414.
[25] Liew P. Y., Wan Alwi S. R., Varbanov P. S., Manan Z. A.,
Klemeš J. J., 2012, A numerical technique for Total Site
sensitivity analysis, Applied Thermal Engineering, 40,
397–408.
[26] Velasco-Garcia P., Varbanov P.S., Arellano-Garcia H.,
Wozny G., 2011, Utility systems operation:
Optimisation-based decision making, Applied Thermal
Engineering, 31, 16, 3196–3205.
[27] Liew, P. Y., Wan Alwi S. R., Klemeš, J. J., Varbanov, P. S.,
and Abdul Manan, Z., 2013, Total Site Heat Integration
with seasonal energy availability, Chemical Engineering
Transactions, 35, 1–24.
[28] Hackl R., Andersson E., Harvey S., 2011, Targeting for
energy efficiency and improved energy collaboration
between different companies using total site analysis
(TSA), Energy, 36, 4609–4615.
[29] Hackl R, Harvey S. 2013, Framework methodology for
increased energy efficiency and renewable feedstock
integration in industrial clusters. Applied Energy, 112,
1500–1509.
[30] Farhata A., Zoughaib A., Khoury K., 2015,
A new methodology combining total site analysis
with exergy analysis, Computers & Chemical
Engineering, 82, 216–227.
[31] Varbanov P. S., Fodor Z., Klemeš J. J., 2012, Total Site
targeting with process specific minimum temperature
difference (ΔTmin), Energy, 44(1), 20–28.
[32] Liew, P. Y., Wan Alwi S. R., Klemeš, J. J.,
Varbanov P. S Abdul Manan, Z., 2014, Utility-Heat
Exchanger Grid Diagram: A Tool for Designing the
Total Site Heat Exchanger Network, Chemiical
Engiineeriing Transactiions, Vol. 39, 7–12. DOI:
10.3303/CET1439002
[33] Boldyryev S., Varbanov P. S., Nemet A., Klemeš J. J.,
Kapustenko P., 2014, Minimum heat transfer area for
Total Site heat recovery, Energy Conversion and
Management, 87, 1093–1097.
[34] Liew, P. Y., Wan Alwi S. R., Lim J. S., Varbanov P. S.,
Klemeš J. J., Abdul Manan, Z., 2014, Total Site Heat
Integration incorporating the water sensible heat, Journal
of Cleaner Production, Vol. 77, 94–104.
[35] Chew K. H., Klemeš J. J., Wan Alwi S. R., Abdul
Manan, Z., 2015, Process modifications to maximise
energy savings in total site heat integration, Applied
Thermal Engineering, 78, 731–739.
[36] Chew K. H., Klemeš J. J., Wan Alwi S. R., Abdul
Manan, Z., 2015, Process modification of Total Site Heat
Integration profile for capital cost reduction, Applied
Thermal Engineering, Applied Thermal Engineering, 89,
1023–1032
[37] Boldyryev S., Varbanov P. S., 2015, Low potential heat
utilization of bromine plant via integration on process
and Total Site levels, Energy, Vol. 90, 47–55.
[38] Matsuda K., Tanaka S., Endou M., Iiyoshi T., 2012,
Energy saving study on a large steel plant by total site
based pinch technology, Applied Thermal Engineering,
Vol. 43, 14–19.
[39] Sahafzadeh M., Ataeib A., Tahouni N., Panjeshahi M. H.,
2013, Integration of a gas turbine with an ammonia
process for improving energy efficiency, Applied
Thermal Engineering, 58, 594–604.
[40] Klemeš, J., Dhole, V. R., Raissi, K., Perry S. J.,
Puigjaner L., 1997, Targeting and Design Methodology
for Reduction of Fuel, Power and CO2 on Total Sites,
Applied Thermal Engineering, 7, 993–103.
[41] Stroitelnye normy i pravila SNiP 41-01-2003., 2004,
Otoplenie, ventilyatsiya i konditsionirovanie Moscow:
GUP TsPP. (In Russian).
[42] Linnhoff B., Townsend D. W., Boland D. et al., 1991,
User guide on process integration for the efficient use
energy. Rugby: IChemE.
[43] Klemeš, J., Arsenyeva O., Kapustenko P.,
Tovazhnyanskyy L., 2015, Compact Heat Exchangers
for Energy Transfer Intensification: Low Grade Heat and
FoulingMitigation, CRC Press, 354.
[44] Sarkar D, 2015, Thermal Power Plant, 1st Edition
Design and Operation, Elsevier, 612.