The use of synthetic phytohormones is a promising technology for intensification and greening of agricultural production. Salicylic acid, among the others, is of particular interest. It causes anti-stress activity in plants in response to various adverse environmental factors in the laboratory. The analysis of the results of model field experiments showed that the use of salicylic acid for pre-sowing treatment of beet seeds varieties "Detroit" and "Egyptian flat" improves the habitus of mature plants, increases their water conservation capacity under adverse growth conditions (concentration 1•10-4 M). In adverse climatic conditions (initially excess moisture, and during the period of active growth and accumulation of nutrients - drought), the mass of the roots of both varieties of beets doubled under the influence of salicylic acid at a concentration of 1•10-5 M and increased 1.7 times at a concentration of 1•10-4 M (Detroit beets). This indicates a variety-specific reaction of beet plants to different concentrations of salicylic acid used for pre-sowing seed treatment. The use of salicylic acid in the cultivation of beets can become a priority in the transition of agriculture to the principles of sustainable development in a changing climate.
1. Anosheh, H. P., Emam, Y., Ashraf, M., & Foolad, M. R. (2012). Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Advanced Studies in Biology, 4 (11), 501-520.
2. Askari, E., & Ehsanzadeh, P. (2015). Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta Physiologiae Plantarum, 37(4), 33-47.
https://doi.org/10.1007/s11738-014-1762-y
3. Belyaeva, Yu. V. (2014). Rezultatyi issledovaniya vodouderzhivayuschey sposobnosti listovyih plastinok Betula pendula Roth. proiznastayuschey v usloviyah antropogennogo vozdeystviya. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 16 (5), 1654-1659. (in Russian). Retrieved from http://www.ssc.smr.ru/
4. Climate-Data.org. (2019). Bushfire resources: Ukraine climate: weather by month for Ukraine. Retrieved from https://en.climate-data.org/europe/ukraine-231/
5. Kaliničenko, O. (2003). Dekoratyvna dendrolohija. Navčalʹnyj posibnyk. Kyiv: Vysoka škola. [іn Ukrainian]
6. Kolupaev, J. (2010). Formyrovanye adaptyvnуch reakcyj rastenyj na dejstvye abyotyčeskych stressov. Kyiv: Osnova. [in Russian]
7. Kosakivs’ka, I. (2003). Fizioloho-biochimični osnovy adaptaciï roslyn do stresiv. Kyiv: Stalʹ. [іn Ukrainian]
8. Kučerenko, M., Babenjuk, J., & Vojcicʹkyj, V. (2001). Sučasni metody biochimičnych doslidženʹ. Kyiv: Ukrsociocentr. [іn Ukrainian]
9. Muhammad, A., Habib R., & Muhammad, A. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?. Jornal of Plant Physiology, 164 (6), 685-694. doi: https://doi.org/ 10.1016/j.jplph.2006.05
https://doi.org/10.1016/j.jplph.2006.05.010
10. Puzik, L., & Hordijenko, L. (2011). Technolohija zberihannja plodiv, ovočiv ta vynohradu. Navč. posibnyk Chark. nac. ahrar. un-t im. V.V. Dokučajeva. Charkiv: KP «Misʹka drukarnja». (in Ukrainian)
11. Rademacher, W. (2000). Growth Retardants: Effects on Gibberellin Biosynthesis and Other Metabolic Pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 501-531. Retrieved from https://europepmc.org/article/med/15012200
https://doi.org/10.1146/annurev.arplant.51.1.501
12. Sibgha N., Muhammad A., Mumtaz H., & Amer, J. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt-stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany, 41 (1), 473-479. Retrieved from https://www.researchgate.net/
13. Sustainable Development Goals: Ukrain. (2017). Bushfire resources: National report. Retrieved from http://un.org.ua/