Інтеркаляційна поведінка і фізико-хімічна характеристика нового інтеркальованого нанокомпозиту з подвійного гідроксиду цинку/алюмінію та клопіраліду з широколистяних гербіцидів

2020;
: сс. 38 - 46
1
Department of Chemistry, University Pendidikan Sultan Idris
2
Department of Chemistry, University Pendidikan Sultan Idris, Nanotechnology Research Centre, University Pendidikan Sultan Idris
3
Department of Chemistry, University Pendidikan Sultan Idris, Nanotechnology Research Centre, University Pendidikan Sultan Idris
4
Foundation of Science Study Centre, University Malaysia Terengganu
5
Noorshida Mohd Ali
6
Nanotechnology Research Centre, University Pendidikan Sultan Idris; Department of Physics, University Pendidikan Sultan Idris
7
Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, University Putra Malaysia
8
Department of Chemistry, University Pendidikan Sultan Idris

Методом спільного осадження одержані нові нанокомпозити, що містять подвійний гідроксид цинку/алюмінію інтеркальований клопіралідом (Zn/Al-LDH-CP). За допомогою порошкової дифракції (PXRD) підтверджено виникнення інтеркаляції. Встановлено, що результати Фур'є спектроскопії та елементного аналізу узгоджуються з результатами PXRD, та підтверджують інтеркаляцію клопіраліду. За допомогою термічних методів аналізу показано, що термічну стійкість нанокомпозиту є вищою у порівнянні з чистим клопіралідом. Запропонована хімічна формула нанокомпозиту [Zn0.75Al0.25(OH)2][C5H2Cl2NCOO]-0.250.67H2O та розраховано вміст клопіраліду в Zn/Al-LDH (25,39 %). Приведені перспективи використання нового нанокомпозиту Zn/Al-LDH-CP.

  1. Schubert U., Hüsing N.: Synthesis of Inorganic Materials, 3rd edn. John Wiley & Sons.Weinheim 2012.
  2. Saber O., Tagaya H.: J. Porous Mater., 2009, 16, 81. https://doi.org/10.1007/s10934-007-9171-x
  3. Kuzma J.: Livest. Sci., 2010, 130, 14. https://doi.org/10.1016/j.livsci.2010.02.006
  4. Martín-Yerga D., González-García M., Costa-García A.: Sensor. Actuat. B, 2012, 165, 143. https://doi.org/10.1016/j.snb.2012.02.031
  5. Ghotbi M., Hussein M., Yahaya A., Rahman M.: J. Phys. Chem. Solids, 2009, 70, 948. https://doi.org/10.1016/j.jpcs.2009.05.007
  6. Cursino A., Gardolinski J., Wypych F.: J. Colloid Interf. Sci., 2010, 347, 49. https://doi.org/10.1016/j.jcis.2010.03.007
  7. Chiu C., Huang T., Wang Y. et al.: Progr. Polym. Sci., 2014, 39, 443. https://doi.org/10.1016/j.progpolymsci.2013.07.002
  8. Hong J., Zhu Z., Lu H., Qiu Y.: Chem. Eng. J., 2014, 252, 267. https://doi.org/10.1016/j.cej.2014.05.019
  9. Jaerger S., Zimmermann A., Zawadzki S. et al.: Polimeros, 2014, 24, 683. https://doi.org/10.1590/0104-1428.1733
  10. Choy J., Son Y.: Bull. Korean Chem. Soc., 2004, 25, 122. https://doi.org/10.5012/bkcs.2004.25.1.122
  11. Berber M., Hafez I., Minagawa K.: [in:] Hashim A. (Ed.), Advance in Nanocomposite Technology. InTech. Rijeka 2011. 335-360. https://doi.org/10.5772/676
  12. Schneiderová B., Pleštil J., Tarábková H. et al.: Dalton T., 2014, 43, 10484. https://doi.org/10.1039/c4dt00141a
  13. Ragavan A., Khan A., O'Hare D.: J. Phys. Chem. Solids, 2006, 67, 983. https://doi.org/10.1016/j.jpcs.2006.01.076
  14. Valente J., Tzompantzi F., Prince J. et al.: Appl. Catal. B, 2009, 90, 330. https://doi.org/10.1016/j.apcatb.2009.03.019
  15. Zhenlan Q., Heng Y., Bin Z., Wanguo H.: Colloid Surface A, 2009, 348, 164. https://doi.org/10.1016/j.colsurfa.2009.07.004
  16. Lu P.: Polym. Plast. Technol. Eng., 2010, 49, 1450. https://doi.org/10.1080/03602559.2010.496415
  17. Nejati K., Davary S., Saati M.: Appl. Surf. Sci., 2013, 280, 67. https://doi.org/10.1016/j.apsusc.2013.04.086
  18. Chaara D., Pavlovic I., Bruna F. et al.: Appl. Clay Sci., 2010, 50, 292. https://doi.org/10.1016/j.clay.2010.08.002
  19. He J., Wei M., Li B. et al.: Preparation of Layered Double Hydroxides. [in:] Duan et al. (Eds.), Layered Double Hydroxides. Springer-Verlag Berlin Heidelberg 2006, 89–119. https://doi.org/10.1007/430_006
  20. Touloupakis E., Margelou A., Ghanotakis D.: Pest. Manag. Sci., 2011, 67, 837. https://doi.org/10.1002/ps.2121
  21. Qiu D., Hou W., Xu J. et al.: Chinese J. Chem., 2009, 27, 1879. https://doi.org/10.1002/cjoc.200990315
  22. Park M., Lee C., Seo Y. et al.: Environ. Sci. Pollut. Res., 2010, 17, 203. https://doi.org/10.1007/s11356-009-0235-0
  23. Grover K., Komarneni S., Katsuki H.: Appl. Clay Sci., 2010, 48, 631. https://doi.org/10.1016/j.clay.2010.03.017
  24. Jin S., Fallgren P., Morris J., Chen Q.: Sci. Technol. Adv. Mater., 2007, 8, 67. https://doi.org/10.1016/j.stam.2006.09.003
  25. Carja G., Kameshima Y., Nakajima A. et al.: Int. J. Antimicrob. Agents, 2009, 34, 534. https://doi.org/10.1016/j.ijantimicag.2009.08.008
  26. Mishra G., Dash B., Pandey S., Mohanty P.: J. Environ. Chem. Eng., 2013, 1,1124. https://doi.org/10.1016/j.jece.2013.08.031
  27. Ryu S., Jung H., Oh J. et al.: J. Phys. Chem. Solids, 2010, 71, 685. https://doi.org/10.1016/j.jpcs.2009.12.066
  28. Isa I., Sharif S., Hashim N., Ghani S.: Ionics (Kiel), 2015, 3, 1.
  29. Mokhtar M., Saleh T., Ahmed N. et al.: Ultrason. Sonochem., 2011, 18, 172. https://doi.org/10.1016/j.ultsonch.2010.05.001
  30. Bovey R.: Woody Plants and Woody Plant Management. Marcel Dekker Inc. New York 2001.
  31. Roberts T. (Ed.): Metabolic Pathways of Agrochemicals. The Royal Society of Chemistry. Cambridge 1998.
  32. Tu M., Hurd C., Randall J.: Weed Control Methods Handbook. The Nature Conservancy 2003.
  33. Hussein M., Hashim N., Yahaya A., Zainal Z.: Sains Malaysiana, 2011, 40, 887.
  34. Bashi A., Hussein M., Zainal Z. et al.: Arab. J. Chem., 2016, 9, 1457. https://doi.org/10.1016/j.arabjc.2012.03.015
  35. Barahuie F., Hussein M., Arulselvan P. et al.: J. Solid State Chem., 2014, 217, 31. https://doi.org/10.1016/j.jssc.2014.04.015
  36. Sarijo S., Ghazali S., Hussein M., Sidek N.: J. Nanopart. Res., 2013, 15, 1. https://doi.org/10.1007/s11051-012-1356-9
  37. Mac Hado G., Arízaga G., Wypych F., Nakagaki S.: J. Catal., 2010, 274, 130. https://doi.org/10.1016/j.jcat.2010.06.012
  38. Sarijo S., Ghazali S., Hussein M., Ahmad A.: Mater. Today Proc., 2015, 2, 345. https://doi.org/10.1016/j.matpr.2015.04.061
  39. Liu P., Wang H., Feng Z. et al.: J. Catal., 2008, 256, 345. https://doi.org/10.1016/j.jcat.2008.03.022
  40. Davila V., Lima E., Bulbulian S., Bosch P.: Micropor. Mesopor. Mater., 2008, 107, 240. https://doi.org/10.1016/j.micromeso.2007.03.013
  41. Hussein M., Jubri Z., Zainal Z., Yahya A.: Mater. Sci.-Poland, 2004, 22, 57
  42. Li S., Shen Y., Xiao M. et al.: Arab. J. Chem., 2015. https://doi.org/10.1016/j.arabjc.2015.04.034
  43. Fernandez J., Ulibarri M., Labajos F., Rives V.: J. Mater. Chem., 1998, 8, 2507.
  44. Clark L.: J. Phys. Chem., 1962, 66, 125. https://doi.org/10.1021/j100807a026
  45. Qiu L., Chen W., Qu B.: Polym. Degrad. Stab., 2005, 87, 433. https://doi.org/10.1016/j.polymdegradstab.2004.09.009
  46. Prasanna S., Kamath P.: J. Colloid Interf. Sci., 2009, 331, 439. https://doi.org/10.1016/j.jcis.2008.11.054
  47. Gasser M., Aly H.: Colloid Surface A, 2009, 336, 167. https://doi.org/10.1016/j.colsurfa.2008.11.047
  48. Whilton N., Vickers P., Mann S.: J. Mater. Chem., 1997, 7, 1623. https://doi.org/10.1039/a701237c
  49. Arizaga G., Satyanarayana K., Wypych F.: Solid State Ionics, 2007, 178, 1143. https://doi.org/10.1016/j.ssi.2007.04.016
  50. Geng C., Xu T., Li Y. et al.: Chem. Eng. J., 2013, 232, 510. https://doi.org/10.1016/j.cej.2013.08.010