Сферично гранульований, аморфний, мезопоруватий каталізатор отримано нанесенням V2O5 на синтезований прямим золь-гель способом гідрогель ZrO2-SiO2 та ідентифікований методами СЕМ, РФА та адсорбції/десорбції N2. Показано, що його гідротермальне і спиртове оброблення підвищує питому поверхню, об'єм і ширину пор і приводить до збільшення виходу пропілену в реакції дегідрування пропану та зниження температури досягнення його високих значень.
[1] Liu, G.; Zhao, Z.-J.; Wu, T.; Zeng, L.; Gong, J. Nature of the Active Sites of VOx/Al2O3 Catalysts for Propane Dehydrogenation. ACS Catal. 2016, 6, 5207-5214. https://doi.org/10.1021/acscatal.6b00893
[2] Rodemerck, U.; Stoyanova, M.; Kondratenko, E.V.; Linke D. Influence of the Kind of VOx Structures in VOx/MCM-41 on Activity, Selectivity and Stability in Dehydrogenation of Propane and Isobutane. J. Catal. 2017, 352, 256-263. https://doi.org/10.1016/j.jcat.2017.05.022
[3] Zhao, J.-Z.; Wu, T.; Xiong, C.; Sun, G.; Mu, R.; Zeng, L.; Gong, J. Hydroxyl-Mediated Non-oxidative Propane Dehydrogenation over VOx/γ-Al2O3 Catalysts with Improved Stability. Angew. Chem. Int. Ed. 2018, 57, 6791-6795. https://doi.org/10.1002/ange.201800123
[4] Nawaz, Z. Light Alkane Dehydrogenation to Light Olefin Technologies: A Comprehensive Review. Rev. Chem. Eng. 2015, 31, 413-436. https://doi.org/10.1515/revce-2015-0012
[5] Sattler, J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114 (20), 10613-10653. https://doi.org/10.1021/cr5002436
[6] Pham, H.N.; Sattler, J.H.B.; Weckhuysen, B.M.; Datye, A.K. Role of Sn in the Regeneration of Pt/γ-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catal., 2016, 6, 2257-2264. https://doi.org/10.1021/acscatal.5b02917
[7] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Comparative Study of Propane Dehydrogenation Over V-, Cr-, and Pt-Based Catalysts: Time On-Stream Behavior and Origins of Deactivation. J. Catal. 2012, 293, 67-75. https://doi.org/10.1016/j.jcat.2012.06.005
[8] Zazhigalov, V.A.; Konovalova, N.D.; Redkina, A.V.; Khomenko, K.N. Sravnitelnoe Issledovanie Degidrirovaniia Propana na VOx/MCM-41 i VOx/Ti-MCM-41 s Polucheniem Propilena i Vodoroda. Ukr. Khim. Zh. 2013, 79 (11), 63-72.
[9] Redkina, A.V.; Konovalova, N.D.; Khomenko, K.N. Degidrirovanie Propana na VxOy/H-Ti-MCM-41. Zh. Khim. Phis. ta Tekhnol. Poverkhni, 2014, 5 (2), 174-189.
[10] Cavani, F.; Ballarini, N.; Cericola, A. Oxidative Dehydrogenation of Ethane and Propane: How far from Commercial Implementation? Catal. Today, 2007, 127, 113-131. https://doi.org/10.1016/j.cattod.2007.05.009
[11] Otroshchenko, T.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. ZrO2-Based Unconventional Catalysts for Non-Oxidative Propane Dehydrogenation: Factors Determining Catalytic Activity. J. Catal. 2017, 348, 282-290. https://doi.org/10.1016/j.jcat.2017.02.016
[12] Otroshchenko, T.; Bulavchenko, O.; Thanh, H.V.; Rabeah, J.; Bentrup, U.; Matvienko, A.; Rodemerck, U.; Paul, B.; Kraehnert, R.; Linke, D. et al. Controlling Activity and Selectivity of Bare ZrO2 in Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 585, 117189. https://doi.org/10.1016/j.apcata.2019.117189
[13] Jeon, N.; Choe, H.; Jrong, B.; Yun, Y. Cu-Promoted Zirconia Catalysts for Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 586, 117211. https://doi.org/10.1016/j.apcata.2019.117211
[14] Redkina, A.V.; Konovalova, N.D.; Kravchenko, N.V.; Strelko, V.V. Degidrirovanie Propana v Propilen na V2O5, Nanesennom na Micro-Mezoporistuiu Sistemu Oksidov ZrO2-SiO2-TiO2. Ukr. Khim. Zh., 2018, 84 (7), 43-59.
[15] Redkina A.V., Konovalova N.D., Strelko V.V.: Sposib Oderzhannia Katalizatora Dehidruvannia Propanu v Propilen. Patent UA 131758 U, January 25, 2019.
[16] Karakoulia, S.A.; Triantafyllidis, K.S.; Lemonidou, A.A. Preparation and Characterization of Vanadia Catalysts Supported on Non-Porous, Microporous and Mesoporous Silicates for Oxidative Dehydrogenation of Propane (ODP). Micropor. Mesopor. Mater. 2008, 110, 157-166. https://doi.org/10.1016/j.micromeso.2007.10.027
[17] Selvam, P.; Dapurkar, S.E. The Effect of Vanadium Sources on the Synthesis and Catalytic Activity of VMCM-41. J. Catal. 2005, 229, 64-71. https://doi.org/10.1016/j.jcat.2004.10.005
[18] Yamaguchi, T. Application of ZrO2 as a Catalyst and a Catalyst Support. Catal. Today 1994, 20, 199-217. https://doi.org/10.1016/0920-5861(94)80003-0
[19] Cimino, A.; Cordischi, D.; De Rossi, S. Ferraris, G.; Gazzoli, D.; Indovina, V.; Minelli, G.; Occhiuzzi, M.; Valigi, M. Studies on Chromia/Zirconia Catalysts I. Preparation and Characterization of the System. J. Catal. 1991, 127, 744-760. https://doi.org/10.1016/0021-9517(91)90196-B
[20] Zhao, B.Y.; Xu, X.P.; Ma, H.R.; Sun, D.H.; Gao. J.M. Monolayer Dispersion of Oxides and Salts on Surface of ZrO2 and Its Application in Preparation of ZrO2-Supported Catalysts with High Surface Areas. Catal. Lett. 1997, 45, 237-244. https://doi.org/10.1023/A:1019048503124
[21] Tanabe, K.; Yamaguchi, T. Acid-Base Bifunctional Catalysis by ZrO2 and Its Mixed Oxides. Catal. Today, 1994, 20, 185-197. https://doi.org/10.1016/0920-5861(94)80002-2
[22] Raju, V.; Jaenicke, S.; Chuah, G.-K. Effect of Hydrothermal Treatment and Silica on Thermal Stability and Oxygen Storage Capacity of Ceria–Zirconia. Appl. Catal. B, 2009, 91, 92-100. https://doi.org/10.1016/j.apcatb.2009.05.010
[23] He, X.; Zhang, H.; Li ,Y.; Hong, C.Q.; Zhao, J.P. Preparation and Structural Characterization of SiO2-ZrO2 Aerogels. Key Eng. Mater. 2007, 336-338, 2282-2285. https://doi.org/10.4028/www.scientific.net/KEM.336-338.2282
[24] Sing, K.S.W.; Everett, D.H.; Haul. R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57 (4), 603-619. https://doi.org/10.1351/pac198254112201
[25] Li, M.; Feng, Z.; Xiong, G.; Ying, P.; Xin, Q.; Li, C. Phase Transformation in the Surface Region of Zirconia Detected by UV Raman Spectroscopy. J. Phys. Chem. B, 2001, 105, 8107-8111. https://doi.org/10.1021/jp010526l
[26] Khodakov, A.; Yang, J.; Su, S.; Iglesia, E.; Bell, A.T. Structure and Properties of Vanadium Oxide-Zirconia Catalysts for Propane Oxidative Dehydrogenation. J. Catal. 1998, 177, 343-351. https://doi.org/10.1006/jcat.1998.2143
[27] del Monte F., Larsen W., Mackenzie J.D. Stabilization of Tetragonal ZrO2 in ZrO2–SiO2 Binary Oxides. J. Am. Chem. Soc. 2000, 83 (3), 628-634. https://doi.org/10.1111/j.1151-2916.2000.tb01243.x
[28] Bosman, H.J.M.; Kruissink, E.C.; van der Spoel, J.; van den Brink, F. Characterization of the Acid Strength of SiO2-ZrO2 Mixed Oxides. J. Catal. 1994, 148, 660-672. https://doi.org/10.1006/jcat.1994.1253
[29] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Effect of Support on Selectivity and On-Stream Stability of Surface VOx Species in Non-Oxidative Propane Dehydrogenation. Catal. Sci. Technol. 2014, 4, 1323-1332. https://doi.org/10.1039/C3CY01083J
[30] Sokolov, S.; Bychkov, V.Yu.; Stoyanova, M.; Rodemerck, U.; Bentrup, U.; Linke, D.; Tyulenin. Y.P.; Korchak, V.N.; Kondratenko, E.V. Effect of VOx Species and Support on Coke Formation and Catalyst Stability in Nonoxidative Propane Dehydrogenation. ChemCatChem 2015, 7, 1691-1700. https://doi.org/10.1002/cctc.201500151
[31] Fujdala, K.L.; Tilley, T.D. Thermolytic Molecular Precursor Routes to Cr/Si/Al/O and Cr/Si/Zr/O Catalysts for the Oxidative Dehydrogenation and Dehydrogenation of Propane. J. Catal. 2003, 218, 123-134. https://doi.org/10.1016/S0021-9517(03)00141-6
[32] Maddah H.A. A Comparative Study between Propane Dehydrogenation (PDH) Technologies and Plants in Saudi Arabia. Am. Sci. Res. J. Eng., Technol., Sci. 2018, 45, 49-63.