Дослідження процесу комплексоутворення плюмбуму (II) з природними макромолекулярними органічними речовинами (фульвокислотами) методами розчинності та гель-хроматографії

2023;
: cc. 740 - 747
1
Ivane Javakhishvili Tbilisi State University R.Agladze Institute of Inorganic Chemistry and Electrochemistr
2
Ivane Javakhishvili Tbilisi State University

Фульвокислоти є одними з найважливіших лігандів, що регулюють геохімічний кругообіг металів у навколишньому середовищі. Метою цієї роботи було дослідити процес комплексоутворення між фульвокислотами та Pb(II). Процес комплексоутворення вивчали методами розчинності та гель-хроматографії зарН 5,0 і 8,0.

  1. Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; Wiley: New York, 1982.
  2. Sarlaki,E.; Paghaleh,A.S.; Kianmehr,M.H.; Vakilian,K.A. Chemical,Spectral and Morphologikal Characterization of Humic Acids Exsracted and Membrane Purified From Lignite. Chem. Chem. Technol. 2020, 14, 353–361. https://doi.org/10.23939/chcht14.03.353
  3. Osadchyy, V.; Nabyvanets, B.;Linnik, P.; Osadcha, N.; Nabyvanets, Y.Processes DeterminingSurface Water Chemistry; Springer International Publishing: Switzerland,2016.
  4. Makharadze, G.; Goliadze, N.; Khaiauri, A.; Makharadze, T.;Supatashvili, G. FulvicAndHumin Acids in Surface Waters of Georgia. In High-performas Polymers for Engineering-based Composites. Apple Academic Press:Waretown,NJ USA, 2016; pp 167-179.
  5. Pisarek,I.; Glowacki,M. Quality of Groundwater and Aquatic Humic Substances from Main Reservoireof Ground Water No. 333. J. Ecol. Eng. 2015,16, 46–53. https://doi.org/10.12911/22998993/60453
  6. Kovács,K.; Gáspár,A.; Sajgó, C.; Schmitt-Kopplin, P.; Tombácz, E. Comparative Study on Humic Substances Isolated in Thermal Groundwatersfrom Deep Aquifers below 700. Geochem J 2012, 46, 211-224. https://doi.org/10.2343/geochemj.1.0168
  7. Varshal,G.M.;Intskirveli,L.N.;Sirotkina,I.C.; Kolosov,I.V.;KoShcheeva,I.Y.On the Association of Fulvic Acids in Aqueous Solutions.Geokhimia1975,1581-1585.
  8. Rice,J.A.;MacCarthy,P. Statistical Evaluation of the Elemental Composition of Humic Substances.Org. Geochem. 1991, 17, 635-648.https://doi.org/10.1016/0146-6380(91)90006-6
  9. Ma,H.;Allen,H.E.;Yin,Y. Characterization of Isolated Fractions of Dissolved Organic Matter from Natural Waters and a Wastewater Effluent. Water Res.2001,35, 985-996.https://doi.org/10.1016/S0043-1354(00)00350-X
  10. Rey-Castro, C.; Mongin, S.; Huidobro, C.; David, C.; Salvador, J.;Garces, J.; Galceran,J.; Mas,F.; Puy,J. Effective Affinity Distribution for the Binding of Metal Ions to a Generic Fulvic Acid in Natural Waters.Environ. Sci. Technol.2009, 43, 7184–7191. https://doi.org/10.1021/es803006p
  11. Lenoir,T.; Manceau, A. Number of Independent Parameters in the Potentiometric Titration of Humic Substances. Langmuir2010, 26, 3998-4003.https://doi.org/10.1021/la9034084
  12. Dulaquas,G.;Waeles, M.; Gerringa, L.A.; Midag, R.; Rijkenberg, M.;Riso, R.G.The Biogeochemistry of Electroactive Humic Substances and Its Connection to Iron Chemistry in the North East Atlantic and the Western Mediterranean Sea. J. Geophys. Res: Oceans 2018,123, 5481–5499.https://doi.org/10.1029/2018JC014211
  13. Bertoli, A.C.; Garcia, J.S.; Trevisan, M.G.;Ramalho,T.C.; Matheus,P.;Freitas,M.P. Interactions fulvate-metal (Zn2+, Cu2+ and Fe2+) :Theoreticalinvestigation of thermodynamic, structuraland spectroscopic properties. Biometals2016, 29,275-285.https://doi.org/10.1007/s10534-016-9914-8
  14. Xu,H.;Xu,D.C.;Wang,Y. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands. ACS Omega2017, 2, 7185–7193.https://doi.org/10.1021/acsomega.7b01039
  15. Makharadze, T.; Makharadze.G.Investigation of Complex Formation Process of Copper with Macromolecular Organic Substances, Isolated from Natural Water.Organic Chemistry Plus2020,1, 1-5. https://doi.org/10.37256/ocp.112020101
  16. De Oliveira Vaz,D.; Fernandes,A.N.; Szpoganicz,B. Complexations of Divalent Metallic Ions with Fulvic Acids. Ecléticaquímica2018, 43, 54-58. https://doi.org/10.26850/1678-4618eqj.v43.1.2018.p54-58
  17. Boguta,P.; Sokolowska,Z. Zinc Binding to Fulvic acids: Assessing the Impact of pH, Metal Concentrations and Chemical Properties of Fulvic Acids on the Mechanism and Stability of Formed Soluble Complexes. Molekules2020, 25, 1297-1321.https://doi.org/10.3390/molecules25061297
  18. Wang, J.;Lü, C.; He, J; Zhao,B. Binding Characteristics of Pb2+ to Natural FulvicAcids Extracted from the Sediments in akeWuliangsuhai, inner Mongolia plateau, P.R. China. Environ Earth Sci. 2016, 75, 768-779.https://doi.org/10.1007/s12665-016-5608-3
  19. Schnitzer, M.; Skinner, S.I.M.Stability Constants of Pb, Ni, Mn, Co, Ca and Mg Fulvic AcidComplexes. Soil Sci.1967, 103, 247-252.https://doi.org/10.1097/00010694-196704000-00004
  20. Makharadze,T; Makharadze,G. Measurement of Complex Formation process of Nickel (II) with Freshwater FulvicAcidsUsing the Solubility Method.Fine Chemical Engineering2021, 2, 54-61. https://doi.org/10.37256/fce.222021870
  21. Dinu,M.; Shkinev,V.M. Complexation of Metal Ions with Organic Substances of Humus Nature: Methods of Study and Structural Features of Ligands, and Distribution of Elements between Species. Geochem. Int.2020, 58, 200–211. https://doi.org/10.1134/S0016702920020032
  22. Adusei-Gyamfi, J.; Ouddane,B.; Rietveld,L.; Cornard,J.; Criquet,J. Natural Organic Matter-Cations Complexation and its Impact on Water Treatment: A Critical Review. Water Res.2019, 160, 130-147. https://doi.org/10.1016/j.watres.2019.05.064
  23. Linnik,P.; Zhezheva,V.; Linnik,R.; Ivanchenko,Ya. Influence of the Component Composition of Organic Matter on Relationship between Dissolved Forms of Metals in the Surface Waters.Hydrobiol. J.2013,49, 91-108.https://doi.org/10.1615/HydrobJ.v49.i1.90
  24. Dudal, Y.; Gerard, F. Accounting for Natural Organic Matter in Aqueous Chemicalequilibrium Models: A Review of the Theories and Applications. Earth Sci Rev2004, 66, 199–216.https://doi.org/10.1016/j.earscirev.2004.01.002
  25. Smith, K.S.; Balistrierib, L.S.; Todd, A.S. Using Biotic Ligand Models to Predict Metal Toxicity in MineralizedSystems. Appl. Geochem. 2015, 57, 55–72.https://doi.org/10.1016/j.apgeochem.2014.07.005
  26. Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol.2021, 12, 643972-643990. https://doi.org/10.3389/fphar.2021.643972
  27. Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy Metal Pollution andHuman Biotoxic Effects. Int. J. Phys. Sci.2007, 2, 112-118. http://www.academicjournals.org/IJPS
  28. Slaveykova,V.I; Wilkinson,K.J.; Ceresa, A.; Pretsch,E.Role of Fulvic Acid on Lead Bioaccumulation by Chlorella kesslerii.Environ. Sci. Technol.2003, 37, 1114–1121. https://doi.org/10.1021/es025993
  29. Lamelas,C.;Wilkinson,K.J.;Slaveykova,V.I. Influence of the Composition of Natural Organic Matter on Pb Bioavailability to Microalgae.Environ. Sci. Technol.2005, 39, 6109–6116.https://doi.org/10.1021/es050445t
  30. Orsetti, S.;Marco-Brown, J.L.; Andrade,E.M.; Molina,F.V. Pb (II) Binding to Humic Substances: An Equilibrium and Spectroscopic Study.Environ. Sci. Technol. 2013, 47, 8325-8333.https://doi.org/10.1021/es400999q
  31. Saar,R.A.; Weber,J.H. Lead(II)-fulvic acid complexes. Conditional Stability Constants, Solubility, and Implications for Lead(II) Mobility. Environ. Sci. Technol.1980, 14, 877–880.https://doi.org/10.1021/es60167a001
  32. Sahu, S.; Banerjee, D.K. Complexation of Copper (II), Cadmum (II) and Lead (II) with Humic and Fulvic Acidsof Yamuna River Sediments. In Chemistry for the Protection of the Environment; NY, USA, 1996; pp 375–388.
  33. Turner, D.R.; Varney, M.S.; Whitfield, M.; Mantoura, R.F.C.; Riley, J.P. Electrochemical Studies of Copper and Lead Complexation by Fulvic Acid.Geochim. Cosmochim. Acta1986,50, 289–297.https://doi.org/10.1016/0016-7037(86)90177-8
  34. Chakraborty,P.; Chakraborty,Ch.L. Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) Binding to Suwannee River Fulvic Acid. Water Air Soil Pollut2008, 195, 63–71.https://doi.org/10.1007/s11270-008-9727-7
  35. Pinheiro,J.P.; Mota,A.M.; Benedetti,M.F. Lead and Calcium Binding to Fulvic Acids:  Salt Effect and Competition. Environmental.Environ. Sci. Technol. 1999,33,3398-3404. https://doi.org/10.1021/es990210f
  36. Christl, I.; Metzger, A.; Heidmann, I.; Kretzschmar, R. Effect of Humic and Fulvic Acid Concentrations and Ionic Strength on Copper and Lead Binding. Environ. Sci. Technol. 2005, 39, 5319-5326. https://doi.org/10.1021/es050018f
  37. Xiong, J.; Koopal, L.K.; Tan, W.F.; Fang, L.C.; Wang, M.X.; Zhao, W.; Liu, F.; Zhang, J.; Weng, L.P. Lead Binding to Soil Fulvicand Humic Acids: NICA-DonnanModeling and XAFS Spectroscopy. Environ. Sci. Technol.2013, 47, 11634–11642. https://doi.org/10.1021/es402123v
  38. Gondar, D.; López, R.; Fiol, S.; Antelo, J.M.; Arce, F. Cadmium, Lead, and Copper Binding to Humic Acid and Fulvic AcidExtracted from an Ombrotrophic Peat Bog. Geoderma2006, 135, 196-203.https://doi.org/10.1016/j.geoderma.2005.12.003
  39. Quan,G.;Yan,J. Binding Constants of Lead by Humicand Fulvic Acids Studied by Anodic Stripping Square Wave Voltammetry. Electrochemistry2010, 46, 90-94. https://doi.org/10.1134/S1023193510010118
  40. Gurjia, Zh.;Supatashvili, G.D.; Varshal,G.M.; Makharadze, G.A.; Chitiashvili,Z.D. Monohydrolysis of Lead Ions in Dilute Solutions. Proceedings Georgian Natl.Acad.Sci. 1992, 18, 22-26.
  41. Makharadze,G.;Supatashvili,G.;Makharadze, T. New Version of Calculation of Stability Constant of Metal-fulvate Complexes on the Example of Zinc Fulvate. Int. J. Environ. Sci. Technol.2018, 15,2165-2168. https://doi.org/10.1007/s13762-017-1576-8
  42. Beck,M.T.; Nagypal,I. Chemistry of complex equilibria;Chichester, Horwood, New York,1990.