Розробка та термічні дослідження модифікованої октадеканової кислоти як матеріалу для зберігання енергії

2024;
: cc. 615 - 622
1
Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila
2
Pusat Riset Lingkungan dan Teknologi Bersih, Badan Riset dan Inovasi Nasional
3
Department of Mechanical Engineering, Politeknik Negeri Bandung
4
Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada

Розроблено та досліджено модифіковану октадеканову кислоту (МОК) як матеріал для зберігання енергії. Температурний перехід для МОК зменшено на 1,03°C і 2,56°C. У результаті МОК має високу частку енергії в рідкій зоні, близько 25% і 33,5%, що ефективно підвищує рівень заряду системи зберігання.

[1] Ismail, I.; Rahman, R. A.; Haryanto, G.; Pane, E. A. The Optimal Pitch Distance for Maximizing the Power Ratio for Savonius Turbine on Inline Configuration. Int. J. Renew. Energy Res. 2021, 11, 595–599. https://dorl.net/dor/20.1001.1.13090127.2021.11.2.10.9
[2] Suyitno, B. M.; Rahman, R. A.; Sukma, H.; Rahmalina, D. The Assessment of Reflector Material Durability for Concentrated Solar Power Based on Environment Exposure and Accelerated Aging Test. Eastern-European J. Enterp. Technol. 2022, 6 (12–120), 22–29. https://doi.org/10.15587/1729-4061.2022.265678
[3] Khademi, A.; Abtahi Mehrjardi, S. A.; Tiari, S.; Mazaheri, K.; Shafii, M. B. Thermal Efficiency Improvement of Brayton Cycle in the Presence of Phase Change Material. Int. Conf. Fluid Flow, Heat Mass Transf. 2022, 135, 1–9. https://doi.org/10.11159/ffhmt22.135
[4] Mohammad Firman, L. O.; Adji, R. B.; Ismail; Rahman, R. A. Increasing the Feasibility and Storage Property of Cellulose-Based Biomass by Forming Shape-Stabilized Briquette with Hydrophobic Compound. Case Stud. Chem. Environ. Eng. 2023, 8, 100443. https://doi.org/10.1016/j.cscee.2023.100443
[5] Praveenkumar, T. R.; Sekar, M.; Pasupuleti, R. R.; Gavurová, B.; Arun Kumar, G.; Vignesh Kumar, M. Current Technologies for Plastic Waste Treatment for Energy Recovery, It’s Effects on Poly Aromatic Hydrocarbons Emission and Recycling Strategies. Fuel 2024, 357, 129379. https://doi.org/10.1016/j.fuel.2023.129379
[6] Khademi, A.; Darbandi, M.; Schneider, G. E. Numerical Study to Optimize the Melting Process of Phase Change Material Coupled with Extra Fluid. AIAA Scitech 2020 Forum 2020, 1 PartF, 1–6. https://doi.org/10.2514/6.2020-1932
[7] Ali, S.; Mehrjardi, A.; Khademi, A.; Fazli, M. Optimization of a Thermal Energy Storage System Enhanced with Fins Using Generative Adversarial Networks Method. Therm. Sci. Eng. Prog. 2024, 49, 102471. https://doi.org/10.1016/j.tsep.2024.102471
[8] Suyitno, B. M.; Ismail, I.; Rahman, R. A. Improving the Performance of a Small-Scale Cascade Latent Heat Storage System by Using Gradual Melting Temperature Storage Tank. Case Stud. Therm. Eng. 2023, 45, 103034. https://doi.org/10.1016/j.csite.2023.103034
[9] Dsilva Winfred Rufuss, D.; Rajkumar, V.; Suganthi, L.; Iniyan, S. Studies on Latent Heat Energy Storage (LHES) Materials for Solar Desalination Application-Focus on Material Properties, Prioritization, Selection and Future Research Potential. Sol. Energy Mater. Sol. Cells 2019, 189, 149–165. https://doi.org/10.1016/j.solmat.2018.09.031
[10] Ismail, I.; Syahbana, M. S. L.; Rahman, R. A. Thermal Performance Assessment for an Active Latent Heat Storage Tank by Using Various Finned-Coil Heat Exchangers. Int. J. Heat Technol. 2022, 40, 1470–1477. https://doi.org/10.18280/ijht.400615
[11] Khademi, A.; Favakeh, A.; Darbandi, M.; Shafii, M. B. Numerical and Experimental Study of Phase Change Material Melting Process in an Intermediate Fluid. In 7th International Conference on Energy Research and Development; ICERD 2019; pp 16–23.
[12] Yuan, Y.; Zhang, N.; Tao, W.; Cao, X.; He, Y. Fatty Acids as Phase Change Materials: A Review. Renew. Sustain. Energy Rev. 2014, 29, 482–498. https://doi.org/10.1016/j.rser.2013.08.107
[13] Suyitno, B. M.; Pane, E. A.; Rahmalina, D.; Rahman, R. A. Improving the Operation and Thermal Response of Multiphase Coexistence Latent Storage System Using Stabilized Organic Phase Change Material. Results Eng. 2023, 18, 101210. https://doi.org/10.1016/j.rineng.2023.101210
[14] Cao, X.; Zhang, R.; Zhang, N.; Chen, L.; Chen, D.; Li, X. Performance Improvement of Lauric Acid-1-Hexadecanol Eutectic Phase Change Material with Bio-Sourced Seashell Powder Addition for Thermal Energy Storage in Buildings. Constr. Build. Mater. 2023, 366, 130223. https://doi.org/10.1016/j.conbuildmat.2022.130223
[15] Zhang, X.; Wang, X.; Zhong, C.; Lin, Q. Ultrathin-Wall Mesoporous Surface Carbon Foam Stabilized Stearic Acid as a Desirable Phase Change Material for Thermal Energy Storage. J. Ind. Eng. Chem. 2020, 85, 208–218. https://doi.org/10.1016/j.jiec.2020.02.003
[16] Xie, B.; Li, C.; Chen, J.; Wang, N. Exfoliated 2D Hexagonal Boron Nitride Nanosheet Stabilized Stearic Acid as Composite Phase Change Materials for Thermal Energy Storage. Sol. Energy 2020, 204, 624–634. https://doi.org/10.1016/j.solener.2020.05.004
[17] Zhao, X.; Li, C.; Bai, K.; Xie, B.; Chen, J.; Liu, Q. Multiple Structure Graphite Stabilized Stearic Acid as Composite Phase Change Materials for Thermal Energy Storage. Int. J. Min. Sci. Technol. 2022, 32, 1419–1428. https://doi.org/10.1016/j.ijmst.2022.10.003
[18] Ao, C.; Yan, S.; Zhao, S.; Hu, W.; Zhao, L.; Wu, Y. Stearic Acid/Expanded Graphite Composite Phase Change Material with High Thermal Conductivity for Thermal Energy Storage. Energy Reports 2022, 8, 4834–4843. https://doi.org/10.1016/j.egyr.2022.03.172
[19] Gandhi, M.; Kumar, A.; Elangovan, R.; Meena, C. S.; Kulkarni, K. S.; Kumar, A.; Bhanot, G.; Kapoor, N. R. A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings. Sustain. 2020, 12, 1–17. https://doi.org/10.3390/su12229481
[20] Qu, Y.; Wang, S.; Tian, Y.; Zhou, D. Comprehensive Evaluation of Paraffin-HDPE Shape Stabilized PCM with Hybrid Carbon Nano-Additives. Appl. Therm. Eng. 2019, 163, 114404. https://doi.org/10.1016/j.applthermaleng.2019.114404
[21] Sciacovelli, A.; Navarro, M. E.; Jin, Y.; Qiao, G.; Zheng, L.; Leng, G.; Wang, L.; Ding, Y. High Density Polyethylene (HDPE) — Graphite Composite Manufactured by Extrusion: A Novel Way to Fabricate Phase Change Materials for Thermal Energy Storage. Particuology 2018, 40, 131–140. https://doi.org/10.1016/j.partic.2017.11.011
[22] Lv, Y.; Yang, X.; Li, X.; Zhang, G.; Wang, Z.; Yang, C. Experimental Study on a Novel Battery Thermal Management Technology Based on Low Density Polyethylene-Enhanced Composite Phase Change Materials Coupled with Low Fins. Appl. Energy 2016, 178, 376–382. https://doi.org/10.1016/j.apenergy.2016.06.058
[23] Harmen, Y.; Chhiti, Y.; Alaoui, F. E. M. H.; Bentiss, F.; Elkhouakhi, M.; Deshayes, L.; Jama, C.; Duquesne, S.; Bensitel, M. Storage Efficiency of Paraffin-LDPE-MWCNT Phase Change Material for Industrial Building Applications. 2020 5th Int. Conf. Renew. Energies Dev. Countries, REDEC 2020 2020, 5, 1–6. https://doi.org/10.1109/REDEC49234.2020.9163856
[24] Kyriaki, E.; Konstantinidou, C.; Giama, E.; Papadopoulos, A. M. Life Cycle Analysis (LCA) and Life Cycle Cost Analysis (LCCA) of Phase Change Materials (PCM) for Thermal Applications: A Review. Int. J. Energy Res. 2018, 42, 3068–3077. https://doi.org/10.1002/er.3945
[25] Qu, Y.; Zhou, D.; Xue, F.; Cui, L. Multi-Factor Analysis on Thermal Comfort and Energy Saving Potential for PCM-Integrated Buildings in Summer. Energy Build. 2021, 241, 110966. https://doi.org/10.1016/j.enbuild.2021.110966
[26] Weng, J.; Huang, Q.; Li, X.; Zhang, G.; Ouyang, D.; Chen, M.; Yuen, A. C. Y.; Li, A.; Lee, E. W. M.; Yang, W. et al. Safety Issue on PCM-Based Battery Thermal Management: Material Thermal Stability and System Hazard Mitigation. Energy Storage Mater. 2022, 53, 580–612. https://doi.org/10.1016/j.ensm.2022.09.007
[27] Kim, S.; Seo, J.; Drzal, L. T. Improvement of Electric Conductivity of LLDPE Based Nanocomposite by Paraffin Coating on Exfoliated Graphite Nanoplatelets. Compos. Part A Appl. Sci. Manuf. 2010, 41, 581–587. https://doi.org/10.1016/j.compositesa.2009.05.002
[28] Rahmalina, D.; Zada, A. R.; Soefihandini, H.; Ismail, I.; Suyitno, B. M. Analysis of the Thermal Characteristics of the Paraffin Wax/High-Density Polyethylene (HDPE) Composite as a Form-Stable Phase Change Material (FSPCM) for Thermal Energy Storage. Eastern-European J. Enterp. Technol. 2023, 1 (6 (121)), 6–13. https://doi.org/10.15587/1729-4061.2023.273437
[29] Liu, C.; Xiao, T.; Zhao, J.; Liu, Q.; Sun, W.; Guo, C.; Ali, H. M.; Chen, X.; Rao, Z.; Gu, Y. Polymer Engineering in Phase Change Thermal Storage Materials. Renew. Sustain. Energy Rev. 2023, 188, 113814. https://doi.org/10.1016/j.rser.2023.113814
[30] Stasevych, M.; Zvarych, V.; Dronik, M.; Sozanskyi, M.; Khomyak, S. Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation. Chem. Chem. Technol. 2023, 17, 510–517. https://doi.org/10.23939/chcht17.03.510
[31] Ode, L.; Firman, M.; Rahmalina, D.; Rahman, R. A. Hybrid Energy-Temperature Method ( HETM ): A Low-Cost Apparatus and Reliable Method for Estimating the Thermal Capacity of Solid – Liquid Phase Change Material for Heat Storage System. HardwareX 2023, 16, e00496. https://doi.org/10.1016/j.ohx.2023.e00496
[32] Abtahi Mehrjardi, S.A.; Khademi, A.; Said, Z.; Ushak, S.; Chamkha, A.J. Enhancing Latent Heat Storage Systems: The Impact of PCM Volumetric Ratios on Energy Storage Rates with Auxiliary Fluid Assistance. Energy Nexus 2023, 11, 100227. https://doi.org/10.1016/j.nexus.2023.100227
[33] Muliawan, B.; Anggrainy, R.; Plamonia, N.; Abdu, R. Preliminary Characterization and Thermal Evaluation of a Direct Contact Cascaded Immiscible Inorganic Salt / High-Density Polyethylene as Moderate Temperature Heat Storage Material. Results Mater. 2023, 19, 100443. https://doi.org/10.1016/j.rinma.2023.100443
[34] Bilonoga, Y.; Atamanyuk, V.; Stybel, V.; Dutsyak, I.; Drachuk, U. Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking Into Account Surface Forces of Heat Carriers. Chem. Chem. Technol. 2023, 17, 608–616. https://doi.org/10.23939/chcht17.03.608
[35] Wu, R.; Gao, W.; Zhou, Y.; Wang, Z.; Lin, Q. A Novel Three-Dimensional Network-Based Stearic Acid/Graphitized Carbon Foam Composite as High-Performance Shape-Stabilized Phase Change Material for Thermal Energy Storage. Compos. Part B Eng. 2021, 225, 109318. https://doi.org/10.1016/j.compositesb.2021.109318
[36] Ouis, N.; Belarbi, A.; Mesli, S.; Benharrats, N. Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites. Chem. Chem. Technol. 2023, 17, 118–125. https://doi.org/10.23939/chcht17.01.118