Удосконалений метод та засоби з функцією автоматичного налаштування параметрів електричного сигналу для виявлення зворотного гортанного нерва

1
Західноукраїнський національний університет
2
Західноукраїнський національний університет

У статті представлено результати розробки програмно-апаратних засобів для ідентифікації зворотного гортанного нерва (ЗГН). В процесі досліджень встановлено, що ефективність виявлення результату стимуляції ЗГН імпульсним електричним струмом залежить від його частоти. На цій основі запропоновано програмні засоби для  автоматичного регулювання параметрів електричного сигналу, щоб максимально ефективно стимулювати тканини операційної рани. При хірургічних операціях на щитовидній залозі ці інструменти використовують для мінімізації ризику пошкодження ЗГН. Представлено вдосконалений спосіб стимуляції тканин операційної рани. Наведено основні алгоритми інструментальних засобів та архітектуру програмної частини. Проведена апробація запропонованого пристрою на базі медичного центру в Україні.

  1. VK. Dhillon, GW. Randolph, BC. Stack, B. Lindeman, G.Bloom, CF Sinclair, and RP. Tufano,. “Immediate and partial neural dysfunction after thyroid and parathyroid surgery: Need for recognition, laryngeal examination, and early treatment”, Head & Neck, vol. 42, no.12, pp. 3779–3794. 2020.
    https://doi.org/10.1002/hed.26472
  2. A.Wilhelm, PC. Conroy, L.Calthorpe, et al. “Routine use of intraoperative nerve monitoring is associated with a reduced risk of vocal cord dysfunction after thyroid cancer surgery”, BMC Surg, p. 215, 2023.
     https://doi.org/10.1186/s12893-023-02122-3
  3. Y. Zhao, Z. Zhao, T. Wang, D. Zhang, G. Dionigi, and H.Sun, “The area under the waveform of electromyography for monitoring the external branches of the superior laryngeal nerve during thyroid surgery”, Gland Surg;vol. 10, no.1, pp. 143-153, 2021. doi: 10.21037/gs-20-570.
  4. D. Papagoras, G. Tzikos, G. Douridas, P. Arseniou, D. Panagiotou, M. Kanara, and T. Papavramidis, “Visualization of the recurrent laryngeal nerve alone versus intraoperative nerve monitoring in primary thyroidectomy: a framework approach to a missing typology”, Front Surg, 10:1176511 Jul 24, 2023. doi: 10.3389/fsurg.2023.1176511. PMID: 37560316; PMCID: PMC10406577.
  5. Y. He, Z. Li, Y. Yang, J. Lei, and Y. Peng. “Preoperative Visualized Ultrasound Assessment of the Recurrent Laryngeal Nerve in Thyroid Cancer Surgery: Reliability and Risk Features by Imaging”, Cancer Manag Res, 13:7057-7066, 2021, https://doi.org/10.2147/CMAR.S330114.
  6. R. Mihai, “Voice and swallowing symptoms after thyroid surgery assessed using the ThyVoice online platform”, Eur Thyroid J.;vol.12, no.4, e230008. Jun 21, 2023. doi: 10.1530/ETJ-23-0008.
  7. H. Aleksandrowicz, A. Owczarczyk-Saczonek, and W. Placek, “Venous Leg Ulcers: Advanced Therapies and New Technologies”, Biomedicines, vol. 9, no.11, p. 1569, Oct 29, 2021 doi: 10.3390/biomedicines9111569. PMID: 34829797; PMCID: PMC8615583. 
  8. Kurz, Annabella, et al. “Comparison of voice therapy and selective electrical stimulation of the larynx in early unilateral vocal fold paralysis after thyroid surgery: A retrospective data analysis”, Clinical Otolaryngology , vol. 46, no. 3, pp. 530-537, 2021. https://doi.org/10.1111/coa.13703
  9. M. Dyvak, A. Pukas, I. Oliynyk and A. Melnyk, “Selection the “Saturated” Block from Interval System of Linear Algebraic Equations for Recurrent Laryngeal Nerve Identification”, IEEE Second International Conference on Data Stream Mining & Processing (DSMP ), Lviv, Ukraine, pp. 444-448, 2018. doi: 10.1109/DSMP.2018.8478528.
  10. M. Dyvak, O. Kozak, and A. Pukas, “Interval model for identification of laryngeal nerves,” Przegląd Elektrotechniczny, vol. 86, no. 1, pp. 139-140, 2010. 
  11. M. Dyvak, N. Porplytsya, "Formation and Identification of a Model for Recurrent Laryngeal Nerve Localization During the Surgery on Neck Organs", Advances in Intelligent Systems and Computing III. CSIT 2018, Cham: Springer, vol.871, pp. 391-404, 2019. https://doi.org/10.1007/978-3-030-01069-0_28
  12. M Dyvak, V Tymets, and V Sheketa, “Adaptive information technology for recurrent laryngeal nerve identification based on electrophysical method of Its stimulation”, Przegląd Elektrotechniczny, vol. 96, no. 8, pp. 28-34, 2020. 10.15199/48.2020.08.06.
  13. N. Porplytsya and M. Dyvak, “Interval difference operator for the task of identification recurrent laryngeal nerve”, in Proc. 16th International Conference on Computational Problems of Electrical Engineering (CPEE), Lviv, Ukraine, pp. 156-158, 2015. doi: 10.1109/CPEE.2015.7333363..
  14. N. Porplytsya, M. Dyvak, I. Spivak and I. Voytyuk, “Mathematical and algorithmic foundations for implementation of the method for structure identification of interval difference operator based on functioning of bee colony”, The Experience of Designing and Application of CAD Systems in Microelectronics, Lviv, Ukraine, , pp. 196-199, 2015. doi: 10.1109/CADSM.2015.7230834.
  15. M. Dyvak, N. Kasatkina, A. Pukas, and N. Padletska, “Spectral analysis of the information signal in the task of identifying the recurrent laryngeal nerve in thyroid surgery”, Przegląd Elektrotechniczny, vol. 89, no. 6, pp. 275-277, 2013.
  16. A guide to the use of electrical stimulation in pediatric neurodisability Access mode https://apcp.csp.org.uk/content/guide-use-electrical-stimulation-paediatric-neurodisability
  17. BC. Tsui and B. Kropelin, “The electrophysiological effect of dextrose 5% in water on single-shot peripheral nerve stimulation”, Anesth Analg; no. 100, pp. 1837–1839, 2005.
    https://doi.org/10.1213/01.ANE.0000153020.84780.A5
  18. BC. Tsui, “Electrical impedance to distinguish intraneural from extraneural needle placement in porcine nerves during direct exposure and ultrasound guidance”, Anesthesiology, no. 109, pp. 479–483. 2008. https://doi.org/10.1097/ALN.0b013e318182c288
  19. Kivy documentation Access modehttps://kivy.org/doc/stable/
  20. Numpy documentation Access modehttps://numpy.org/doc/stable/
  21. Matplot Access mode https://matplotlib.org/stable/
  22. Pyaudio Access mode https://people.csail.mit.edu/hubert/pyaudio/