глибоке навчання

Enhancing Images in Poor Lighting Conditions Through Fusion of Optical and Thermal Camera Data

The goal of the article is to provide a methodology of improving images quality in low-light conditions trough fusion of data received from telecamera and thermal camera. Data from thermal camera uses for compensation of significant illumination reduction in poor lighting conditions and allow keep required level of information. Proposed method establishes dynamic regulation of fusion coefficients depending on brightness level to minimize artifacts, increase edge sharpness, and improve object detectability.

Inference-Time Optimization for Fast and Accurate Visual Object Tracking

Visual object tracking has recently benefited from the adoption of transformer architectures, which provide strong modeling capacity but incur high computational and memory costs, limiting real-time deployment.  Existing efficiency-focused trackers primarily address this challenge through architectural redesign, often trading accuracy for speed.

Адаптивна система безперервної автентифікації на основі емоційного та контекстуального стану користувача

У статті розглянуто вирішення проблеми низької точності систем безперервної автентифікації, що спричинені природною варіативністю поведінки користувача. Проведено аналіз існуючих біометричних підходів та обґрунтовано вибір адаптивної двоступеневої моделі, як ефективного способу врахування психоемоційного стану. Авторами статті спроектовано систему AURA (акронім від англ. Automatic User Recognition Agent) з використанням компонентного підходу, що дозволило чітко розділити завдання ідентифікації стану та автентифікації.

Towards Urban Public Safety: A Literature Review of Deep Learning Approaches for CCTV-based Violence Detection

Violence detection in video surveillance systems is a critical challenge for ensuring public safety in smart cities.  This study presents a comprehensive analysis of deep learning architectures and transfer learning techniques for violence detection, evaluating their performance across benchmark datasets, including Hockey Fight, Movies, and UCF-Crime.  ResNet50, MobileNetV2, ConvLSTM, DenseNet121, and Xception models are compared in terms of accuracy, computational efficiency, and real-world applicability.  Results highlight ResNet50 as the most effective model, achievi

Radiomics and Transformer-Based Deep Learning for Non-Invasive Prediction of PD-L1 Expression in Non-Small Cell Lung Cancer: A Paradigm Shift in Precision Oncology

Traditional biomarker testing for Programmed Death-Ligand 1 (PD-L1) in Non-Small Cell Lung Cancer (NSCLC) remains invasive and costly.  This study proposes a non-invasive alternative by integrating radiomic features extracted from CT scans with advanced deep learning architectures.  We evaluated Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU).  Our results demonstrate that Transformer-based models significantly outperform conventional appro

Advanced Approaches for Vulnerability Detection in Solidity-Based Smart Contracts: A Comparative Review

With the advancement of blockchain technology, Solidity-based smart contracts have become essential for automating and securing digital transactions across various sectors, from finance to supply chain management.  These contracts enable decentralized exchanges without intermediaries, enhancing transparency.  However, their immutable nature poses security challenges: any flaw in the code becomes permanent, exposing contracts to attacks and leading to financial and reputational losses.  This paper provides a comparative analysis of recent machine learning (ML) and deep l

Математичне моделювання апаратно-оптичних спотворень аерофотоданих

Проведено формалізацію математичних моделей спотворень цифрових зображень, що виникають при аерофотозйомці з бортових систем безпілотних літальних апаратів та істотно впливають на точність і достовірність алгоритмів автоматизованого виявлення й класифікації візуальних об’єктів у складному зовнішньому середовищі. Запропоновано узагальнену схему класифікації спотворень, яка враховує джерела їх виникнення та розподіляє дефекти на апаратно-оптичні, динамічні та зовнішні фактори, що зумовлюють структурну нестабільність вхідних фотоданих.

Sentiment-driven approach to refine stock price prediction

Stock price values are known for their volatility due to multiple factors making their predictability a difficult task.  As social media posts and news can be considered as one of the major factors in price change, we aim in this paper to predict the next-day stock price of 4 different companies, using both social media and financial datasets that range from September 30, 2021, to September 30, 2022, as inputs.  The datasets go through a preprocessing pipeline that includes sentiment analysis methods, where tweets are classified by employing TextBlob and finetuned RoBER

Advanced text-based transformer architecture for malicious social bots detection

The increasing prevalence of automated social media accounts, or Social Media Bots (SMBs), presents significant challenges in maintaining authentic online discourse and preventing disinformation campaigns on social platforms.  This research introduces a novel multiclass classification framework for detecting and categorizing SMBs, leveraging fine-tuned transformer-based models.  In this study, we conducted a comprehensive comparative analysis of various transformer variants, including BERT, DistilBERT, RoBERTa, DeBERTa, XLNet, and ALBERT, to evaluate their efficacy in r

Development of a deep learning-based system in Python 3.9 with YOLOv5: A case study on real-time fish counting based on classification

This study developed a real-time fish classification and counting system for six types of fish using the YOLOv5 machine learning model with high accuracy.  The system achieved an F1-score of 0.87 and a precision confidence curve with an all-classes value of 1.00 at a confidence level of 0.920, demonstrating the model's reliability in object detection and classification.  Real-time testing showed that the system could operate quickly and accurately under various environmental conditions with an average inference speed of 30 FPS.  However, several challenges remain, such