глибоке навчання

Математичне моделювання апаратно-оптичних спотворень аерофотоданих

Проведено формалізацію математичних моделей спотворень цифрових зображень, що виникають при аерофотозйомці з бортових систем безпілотних літальних апаратів та істотно впливають на точність і достовірність алгоритмів автоматизованого виявлення й класифікації візуальних об’єктів у складному зовнішньому середовищі. Запропоновано узагальнену схему класифікації спотворень, яка враховує джерела їх виникнення та розподіляє дефекти на апаратно-оптичні, динамічні та зовнішні фактори, що зумовлюють структурну нестабільність вхідних фотоданих.

Sentiment-driven approach to refine stock price prediction

Stock price values are known for their volatility due to multiple factors making their predictability a difficult task.  As social media posts and news can be considered as one of the major factors in price change, we aim in this paper to predict the next-day stock price of 4 different companies, using both social media and financial datasets that range from September 30, 2021, to September 30, 2022, as inputs.  The datasets go through a preprocessing pipeline that includes sentiment analysis methods, where tweets are classified by employing TextBlob and finetuned RoBER

Advanced text-based transformer architecture for malicious social bots detection

The increasing prevalence of automated social media accounts, or Social Media Bots (SMBs), presents significant challenges in maintaining authentic online discourse and preventing disinformation campaigns on social platforms.  This research introduces a novel multiclass classification framework for detecting and categorizing SMBs, leveraging fine-tuned transformer-based models.  In this study, we conducted a comprehensive comparative analysis of various transformer variants, including BERT, DistilBERT, RoBERTa, DeBERTa, XLNet, and ALBERT, to evaluate their efficacy in r

Development of a deep learning-based system in Python 3.9 with YOLOv5: A case study on real-time fish counting based on classification

This study developed a real-time fish classification and counting system for six types of fish using the YOLOv5 machine learning model with high accuracy.  The system achieved an F1-score of 0.87 and a precision confidence curve with an all-classes value of 1.00 at a confidence level of 0.920, demonstrating the model's reliability in object detection and classification.  Real-time testing showed that the system could operate quickly and accurately under various environmental conditions with an average inference speed of 30 FPS.  However, several challenges remain, such

Forecasting solar energy generation using deep learning models

The application of deep learning models for forecasting solar energy generation is considered.  An analysis and comparison of the efficiency of recurrent (LSTM, GRU), convolutional (CNN), and temporal convolutional networks (TCN) for forecasting time series of solar energy generation were conducted.  The possibility of improving forecasting accuracy by constructing a hybrid model combining ARIMA and CNN was explored.  The results of experiments for different EU countries are presented, and a comparison of models in terms of forecasting accuracy and computational efficiency is performed as w

ВИЗНАЧЕННЯ ХВОРОБ ВИНОГРАДУ ЗА ЗОБРАЖЕННЯМ З ВИКОРИСТАННЯМ МЕТОДІВ ШТУЧНОГО ІНТЕЛЕКТУ

У роботі досліджено моделі та методи визначення хвороб винограду із використанням сучасних методів штучного інтелекту. Проаналізовано відомі методології класифікації та розпізнавання за зображеннями хвороб винограду з використання нейронних мереж. Виділено низку проблем щодо покращення результатів розпізнавання.

ТЕХНОЛОГІЯ НАВЧАННЯ З ПІДКРІПЛЕННЯМ ІЗ МАСКОЮ ДІЙ ДЛЯ ПЛАНУВАННЯ ЗАМОВЛЕНЬ

Високопродуктивне й ефективне планування замовлень – поширена комбінаторна оптимізаційна задача, що виникає в різноманітних контекстах. Побудова моделі, здатної формувати збалансовані за якістю та обчислювальними витратами розклади, – істотний виклик через масштабний простір допустимих дій. У роботі запропоновано високопродуктивне середовище та модель навчання з підкріпленням для розподілу замовлень на ресурси із маскуванням недопустимих дій.

Numerical simulation by Deep Learning for discrete nonlinear problems involving the anisotropic p(.)-Laplacian

In this paper, we establish the existence of a class of discrete nonlinear systems involving the anisotropic $\vec{p}(\cdot)$-Laplacian operator using an optimization based approach.  We then simulate the solutions by implementing a deep learning model.  The numerical results demonstrate that the proposed method is stable and robust compared to conventional approaches such as the Newton–Krylov method.

Структура інформаційної системи передбачення та інтерпретації зміни стану користувача сервісу

В роботі досліджено проблему передбачення зміни станів користувачів (зокрема відтоку) на основі сесійних даних із використанням глибинних нейронних мереж. Було розглянуто застосування моделей довгої короткочасної пам’яті та згорткових нейронних мереж, а також використання кодування пар байтів для попереднього опрацювання даних. Проведено аналіз функціоналу розробленої інформаційної системи для прогнозування зміни стану користувачів та інтерпретації моделей прогнозування, яка поєднує методи аналізу даних, побудови прогнозних моделей та пояснення отриманих результатів.

Виявлення аномалій у реальному часі в розподілених IoT-системах:комплексний огляд та порівняльний аналіз

Стрімке поширення технології Інтернету речей (IoT) призвело до безпрецедентного росту обсягів неоднорідних даних з розподілених пристроїв. Цей величезний потік даних робить все більш важливим впровадження надійних і ефективних методів виявлення аномалій в режимі реального часу, які можуть попередити про проблеми у розподілених системах. Виявлення аномалій даних є критично важливим у сучасному світі, оскільки воно дозволяє на ранній стадії виявляти відхилення, які можуть свідчити про збої в роботі системи, порушення безпеки або операційну неефективність.