NBO аналіз

Ефект основності та нуклеофільності в перенесенні заряду адуктів AlH3-основ: теоретичний підхід

Це дослідження дозволяє вивчити взаємодію кислоти Льюїса $\left(\mathrm{AlH}_3\right)$ й основ Льюїса: $\mathrm{CO} ; \mathrm{H}_2\mathrm{O} ; \mathrm{NH}_3 ; \mathrm{PH}_3 ; \mathrm{PCl}_3 ; \mathrm{H}_2 \mathrm{S} ; \mathrm{CN}^{-} ; \mathrm{OH}^{-} ; \mathrm{O}_2^{-2} ; \mathrm{F}^{-} ; \mathrm{N}\left(\mathrm{CH}_3\right)_3 ; \mathrm{N}_2 ; \mathrm{N}_2 \mathrm{H}_4 ; \mathrm{N}_2 \mathrm{H}_2 ; \mathrm{C}_5 \mathrm{H}_5 \mathrm{N} ; \mathrm{C}_6 \mathrm{H}_{5^{-}}\mathrm{N}\mathrm{H}_2$.

Моделювання та оптимізація складності за β-циклодекстрином моделі органічного забруднювача: метил м-червоний

Проведено моделювання адуктів β-циклодекстрину (β-CD) з м-метиловим червоним (m-MR) за допомогою параметричного методу 6 (РМ6), напівемпіричних молекулярних орбітальних розрахунків та методу натуральної орбіталі (NBO). Показано, що реакція приєднання відбувається внаслідок підтримання фіксованих координат β-CD та переміщення гостьової молекули. Різні положення між m-MR та β-CD вимірюються щодо відстані між еталонним атомом (N) гостьової молекулі та початком координат екваторіальної площини β-CD.