Моделювання та оптимізація складності за β-циклодекстрином моделі органічного забруднювача: метил м-червоний

1
Department of Petrochemistry and Process Engineering, Faculty of Technology, University August 20, LRPCSI Laboratory, University of August 20
2
Department of Petrochemistry and Process Engineering, Faculty of Technology, University 20 August 1955-Skikda, Algeria, Laboratory LRPCSI, University 20 August 1955-Skikda, Algeria
3
Department of Petrochemistry and Process Engineering, Faculty of Technology, University August 20
4
Laboratory of Physico-Chemistry of Mineral Materials and their Applications, National Center for Research in Materials Sciences, Technopole Bourj Cedria, Tunisia
5
Laboratory of Physico-Chemistry of Mineral Materials and their Applications, National Center for Research in Materials Sciences, Technopole Bourj Cedria, Tunisia
6
Department of Petrochemistry and Process Engineering, Faculty of Technology, University August 20

Проведено моделювання адуктів β-циклодекстрину (β-CD) з м-метиловим червоним (m-MR) за допомогою параметричного методу 6 (РМ6), напівемпіричних молекулярних орбітальних розрахунків та методу натуральної орбіталі (NBO). Показано, що реакція приєднання відбувається внаслідок підтримання фіксованих координат β-CD та переміщення гостьової молекули. Різні положення між m-MR та β-CD вимірюються щодо відстані між еталонним атомом (N) гостьової молекулі та початком координат екваторіальної площини β-CD. Встановлено, що адукт m-MR/β-CD (комплекс B) має нижче негативне значення ΔG порівняно з іншим m-MR/β-CD (комплексом A), що підкреслює спонтанну поведінку процесу приєднання. Крім того, під час приєднання енергія комплексоутворення є негативною, що дає можливість стверджувати, що комплексоутворення m-MR у β-CD є термодинамічно вигідним. Встановлено, що мінімальну кількість енергії PM6 отримують в орієнтації B, а гостьова молекула частково інкапсульована в порожнині β-CD. За допомогою NBO аналізу проведено характеристику взаємодії водневих зв’язків між одинокою парою (LP(Y)) атома Y та антизв’язуючою орбіталлю (BD٭(X-H)).

[1] Lehn, J. Supramolecular Chemistry. Science 1993, 260, 1762-1763. https://doi.org/10.1126/science.8511582
[2] Schneider, H.-J. Binding Mechanisms in Supramolecular Complexes. Angew. Chem. Int. Edit. 2009, 48, 3924-3977. https://doi.org/10.1002/anie.200802947
[3] Szejtli, J. Past, Present and Futute of Cyclodextrin Research. Pure Appl. Chem. 2004, 76, 1825-1845. https://doi.org/10.1351/pac200476101825
[4] Oshovsky, G.V.; Reinhoudt, D.N.; Verboom, W. Supramolecular Chemistry in Water. Angew. Chem. Int. Edit. 2007, 46, 2366-2393. https://doi.org/10.1002/anie.200602815
[5] Szente, L.; Szejtli, J. Cyclodextrins as Food Ingredients. Trends Food Sci. Technol. 2004, 15, 137-142. https://doi.org/10.1016/j.tifs.2003.09.019
[6] Brewster, M.E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Del. Rev. 2007, 59, 645-666. https://doi.org/10.1016/j.addr.2007.05.012
[7] Liu L., Guo, Q.-X. The Driving Forces in the Inclusion Complexation of Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1. https://doi.org/10.1023/A:1014520830813
[8] Khouri, S.J.; Abdel-Rahim, I.A.; Shamaileh, E.M. A Thermodynamic Study of α-, β-, and γ-Cyclodextrin-complexed m-Methyl Red in Alkaline Solutions. J. Incl. Phenom. Macrocycl. Chem. 2013, 77, 105-112. https://doi.org/10.1007/s10847-012-0221-x
[9] Del Valle E.M.M. Cyclodextrins and their Uses: A Review. Proc. Biochem. 2004, 39, 1033-1046. https://doi.org/10.1016/S0032-9592(03)00258-9
[10] Zhan, J.; Li, Q.; Hu, Q.; Wu, Q.; Li, C.; Qiu, H.; Zhang, M.; Yin, S. A Stimuli-Responsive Orthogonal Supramolecular Polymer Network Formed by Metal–Ligand and Host–Guest Interactions. Chem. Commun. 2014, 50, 722-724. https://doi.org/10.1039/C3CC47468B
[11] Thorsteinn, L.; Duchene, D. Cyclodextrins and their Pharmaceutical Applications. Int. J. Pharm. 2007, 329, 1-11. https://doi.org/10.1016/j.ijpharm.2006.10.044
[12] Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743-1754. https://doi.org/10.1021/cr970022c
[13] Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 1996, 96, 1027-1044. https://doi.org/10.1021/cr950202r
[14] Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173-1213. https://doi.org/10.1007/s00894-007-0233-4
[15] Li, X.-S.; Liu, L.; Guo, Q.-X.; Chu, S.-D.; Liu, Y.-C. PM3 Molecular Orbital Calculations on the Complexation of α-Cyclodextrin with Acetophenone. Chem. Phys. Lett. 1999, 307, 117-120. https://doi.org/10.1016/S0009-2614(99)00511-4
[16] Xiao, Y.; Yang, L.; Mao, P.; Yuan, J.; Deng, Y.; Qu, L. Inclusion Complexes of Phosphorylated Daidzein Derivatives with β-Cyclodextrin: Preparation and Inclusion Behavior Study. Spectrochim. Actat A 2012, 85, 298-302. https://doi.org/10.1016/j.saa.2011.10.014
[17] Rahim, M.; Madi, F.; Nouar, L.; Bouhadiba, A.; Haiahem, S.; Khatmi, D.E.; Belhocine, Y. Driving Forces and Electronic Structure in β-Cyclodextrin/3,3′-Diaminodiphenylsulphone Complex. J. Mol. Liq. 2014, 199, 501-510. https://doi.org/10.1016/j.molliq.2014.09.035
[18] Tawarah, K.M.; Khouri, S. Determination of the Stability and Stoichiometry of p-Methyl Red Inclusion Complexes with γ-Cyclodextrin. Dyes Pigments 2000, 45, 229-233. https://doi.org/10.1016/S0143-7208(00)00024-3
[19] Thendral, P.; Thulasidhasan, J. Inclusion Complexation of Methyl Orange and Methyl Red with α- and β-Cyclodextrin: Spectral and Theoretical Study. Int. J. Chem. Pharm. Sci. 2018, 9, 25-33.
[20] Korth, M.; Pitoňák, M.; Řezáč, J.; Hobza, P. A Transferable H-Bonding Correction for Semiempirical Quantum-Chemical Methods. J. Chem. Theory Comput. 2010, 6, 344-352. https://doi.org/10.1021/ct900541n
[21] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. et al. Gaussian 09. Gaussian, Inc.: Wallingford CT, 2009.
[22] Chem-Office 3D ultra, Version 10 Cambridge Software, 2006.
[23] Hyperchem, Release 7.51 for Windows, Hypercube. Inc., 2002. 
[24] Stewart, J. Middle East Succession Issues. Trusts Trustees 2009, 15, 765-769. https://doi.org/10.1093/tandt/ttp117
[25] Nouar, L.; Haiahem, S.; Bouhadiba, A.; Madi, F. Theoretical Study of Inclusion Complexation of 3-Amino-5-nitrobenzisothiazole with β-Cyclodextrin. J. Mol. Liq. 2011, 160, 8-13. https://doi.org/10.1016/j.molliq.2011.02.016
[26] Liu, L.; Guo, Q.-X. Use of Quantum Chemical Methods to Study Cyclodextrin Chemistry. J. Incl. Phenom. Macrocycl. Chem. 2004, 50, 95-103. https://doi.org/10.1007/s10847-003-8847-3
[27] Henriksen, N.M.; Gilson, M.K. Evaluating Force Field Performance in Thermodynamic Calculations of Cyclodextrin Host–Guest Binding: Water Models, Partial Charges, and Host Force Field Parameters. J. Chem. Theory Comput. 2017, 13, 4253-4269. https://doi.org/10.1021/acs.jctc.7b00359
[28] Zhang, H.; Yin, C.; Yan, H.; van der Spoel, D. Evaluation of Generalized Born Models for Large Scale Affinity Prediction of Cyclodextrin Host–Guest Complexes. J. Chem. Inform. Model. 2016, 56, 2080-2092. https://doi.org/10.1021/acs.jcim.6b00418