тематичне моделювання

Topic Modeling for News Recommendations: Evaluating the Performance of LDA and BERTopic

Text analysis is an important component in the evolution of recommender systems, as it enables meaningful information to be extracted from vast amounts of textual data.  This study performs a comparative analysis of two main topic modeling techniques, Latent Dirichlet Allocation (LDA) and BERTopic in the context of news recommender systems.  Using a dataset of Moroccan news articles, we evaluate the ability of these models to generate coherent and interpretable topics.  Our results demonstrate that BERTopic outperforms LDA in terms of topic consistency and semantic rich

Особливості рекомендаційного алгоритму на основі аналізу методів добування даних з соціальних мереж

В останні роки платформи соціальних мереж стали потужними інструментами зі збирання даних для покращення досвіду користувачів. Величезна кількість даних, отриманих через соціальні медіа, надає унікальну можливість для розроблення інноваційних систем рекомендацій. У статті проаналізовано застосування методів інтелектуального аналізу даних щодо соціальних мереж у контексті ефективних систем рекомендацій, зосереджено увагу на трьох ключових методологіях: аналіз тональності тексту (АТТ), тематичному моделюванні (ТМ) й аналізі соціальних мереж (АСМ), виокремлено їхні позитивні риси.