CONCEPT OF ECO-EFFICIENT NANOMODIFIED ALKALINE ACTIVATED COMPOSITE CEMENTS WITH HIGH EARLY STRENGTH

There were analyzed the ways of reduction of СО2 emissions in the cement industry. It was shown that a significant reduction of СО2 emissions in construction is achieved through the using of composite cements with a lower clinker factor that meets the requirements of the low carbon strategy for the cement industry. In this case, the replacement of part of Portland cement clinker with mineral additives in such cements leads decreasing of their strength, especially at early age. The influence of nano-SiO2 additives, alkaline activator (Na2SO4) and polycarboxylate type superplasticizer (PCE) on the structure formation and on the strength of Portland composite cement CEM II/B-M (S-P-L) 32.5R with additives of granular blast furnace slag, natural zeolite and limestone in early age. It was shown that the synergetic combination of mineral additives with a reduction of the clinker factor up to 65 % and the using of the complex of nano-SiO2-Na2SO4-PCE in Рortland composite cements due to the “accelerating effect”, provides a significant increase in strength at an early age (after 10 and 24 h). The methods of X-ray diffraction analysis and electron microscopy revealed that the introduction of high-surface reactivity particles of nano-SiO2 provides the intensive bіnding of
calcium hydroxide to form a denser CSH-gel at an early age of hardening of composite cement and compaction of its microstructure with fine crystals of ettringitе. Creating eco-efficient Portland composite cements with high early strength would provide the technical, ecological and economic effects in building constructions.

1. The role of cement in the 2050 low carbon economy. Cembureau, 64.

2. Schnejder M. (2018). Innovation and technical trends in cement production. 20. Internationale Baustofftagung, Weimar, 1, 75–80.

3. Sabbie A., Vanderley M., Sergio A., Arpad H. (2017). Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research, 114, 115–124.

4. Sanytsky M., Kropyvnytska T., Ivashchyshyn H., Rusyn B. (2017). Koncepcia nyzkovuhlycevoho rozvytku v cementnij promyslovosti. Budivelni materialy i vyroby [Building materials and products], 5–6, 10–13.

5. Scrivener K., John V., Gartner E. (2016). Eco-efficient cements, 64.

6. Shi C., Fernández A., Jiménez, Palomo A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement.
Cement and Concrete Research, 41(7), 750–763.

7. Krivenko P. (2017). Why Alkaline Activation – 60 Years of the Theory and Practice of Alkali-Activated Materials. Journal of Ceramic Science and Technology, 08[3], 323–334.

8. Sanytsky М. А., Sobol Kh. S., Markiv Т. Ye. (2010). Modyfikovani kompozytsijni cementy. Lviv: Vydavnytstvo Lviv. Politekhniky, 132.

9. Sobol Kh. S. (2004). Koncepcia zastosuvannia modyfikovanykh kompozytsijnykh cementiv u budivelnomu vyrobnytstvi. Visnyk NU “Lvivska politekhnika”: Teoria і praktyka budivnytstva, 520, 179–182.

10. Dorazilová I., Bodnarová L., Hela R., Válek J. (2015). Portland-limestone cement and portland-composite cement (“green cement”) – properties and applicability for concrete production. 18. іbausil, Weimar, 117–122.

11. Krol A.,Kuteranska J. (2015). Sklad i wlasciwosci nowych cementow wieloskladnikowych CEM VI. Budownictwo, Technologie, Architektura, 3, 58–61.

12. Wolter A., Palm S. (2012). Aktuelle entwicklungen von multikompositzementen und ihren hauptbestandteilen. 18. ibausil, Weimar, 1, 0001–0011.

13. Sanytsky М. А., Kropyvnytska Т. P., Kirakevych І. І., Rusyn B. H. (2013). Strukturoutvorennia ta mitsnist modyfikovanykh multymodalnykh kompozytsijnykh cementiv. Visnyk dergavnoi akademii budivnitstva i arkcitektury ODABA, 230–237.

14. Sanytsky М., Kropyvnytska Т., Rusyn B., Geviuk І. (2014). Multimodal composite Portland-cements, modified with ultrafine mineral additives. Visnyk NU “Lvivska politekhnika”: Teoria і praktyka budivnytstva, 781, 158–162.

15. Sanytsky M., Kropyvnytska T., Kruts T., Horpynko O., Geviuk I. (2018). Design of Rapid Hardening Quaternary Zeolite-Containing Portland-Composite Cements. Key Engineering Materials, 761, 193–196. 12.

16. Sanytsky M. А. (1999). Alkaline portland cements. Alkaline cements and concretes. Kyiv, 315–336.

17. Krivenko P., Runova R., Sanytsky M., Rudenko I. (2015). Alkaline cements: monograph. Kyiv: Pub. “Osnova”, 448.

18. Zhang J., Wang Q., Wang Zh. (2016). Optimizing design of high strength cement matrix with supplementary cementitious materials. Construction and Building Materials, 120(1), 123–136.

19. Berra M., Carassiti F., Mangialardi T., Paolini A. E., Sebastiani M. (2012). Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. J. Construction and Building Materials, 35, 666–675.

20. Land G., Stephan D. (2015). Controlling cement hydration with nanoparticles. Cement and Concrete Composites, 57, 64–67.

21. Sikora P., Elrahman M. A., Stephan D. (2018). The Influence of Nanomaterials on the Thermal Resistance of Cement-Based Composites: A Review. Nanomaterials, 8/ 465, 1–33.

22. Krivenko P., Sanytsky M., Kropyvnytska T. (2018). Alkali-Sulfate Activated Blended Portland Cements. Solid State Phenomena, 276, 9–14.

23. Plank J. (2015). Concrete Admixtures – Where Are We Now and What Can We Expect in the Future? 19 Internationale Baustofftagung, Weimar, 2, 11–17.

24. Маrushchak U., Sanytsky M., Mazurak T., Olevych Y. (2016). Research of nanomodified Port-land cement compositions with high early age strength. Eastern-European Journal of Enter-prise Technologies,
6/6, 50–57.