Technological forecast of bearing capacity and properties of contact connection of bimetallic hollow spheres under electromagnetic pulses action

The initial boundary-value problem of thermomechanics for a hollow bimetallic sphere under the action of a non-stationary electromagnetic field is formulated. The azimuthal component of the magnetic field strength vector, the temperature, and the radial component of the displacement vector are chosen to be the determining functions.  To find them, a technique has been developed to solve the corresponding contact problems of electrodynamics, thermal conductivity, and thermal elasticity.  This technique uses a quadratic approximation of the distributions of all determining functions with respect to the radial coordinate in each component layer.  With its help, the basic initial boundary-value problems for the determining functions are reduced to the Cauchy problems for their integral (total over the layers package) characteristics.  The general solutions to these problems are obtained under a homogeneous non-stationary electromagnetic action.  On this basis, the solutions to the problem for bodies under the action of an electromagnetic pulse are written.  A computer analysis of thermoelastic behavior, bearing capacity, and preservation of the properties of the contact connection of the sphere is carried out depending on the pulse parameters.

  1. Matthews F., Rawlings R.  Composite materials: engineering and science.  London, Chapman & Hall. 20–46 (1994).
  2. Shneerson G., Dolotenko M., Krivosheev S.  Strong and Superstrong Pulsed Magnetic Fields Generation.  De Gruyter (2010).
  3. Herlach F.  Pulsed Magnets.  Rep. Prog. Phys.  62 (6), 859–920 (1999).
  4. Podstrigach Ya. S., Burak Ya. I., Gachkevich A. R., Chernyavskaya L. V.  Thermoelasticity of Electrically Conductive Bodies.  Kiev, Naukova Dumka. 17–33 (1977), (in Russian).
  5. Musii R., Melnyk N., Dmytruk V.  Thermoelastic processes analyzer for piecewise homogeneous conductive structures subjected to pulsed electromagnetic action.  Journal of Thermal Stresses.  41 (9), 1125–1135 (2018).
  6. Motovilovets I. A., Kozlov V. I.  Mekhanika svyazannykh poley v elementakh konstruktsiy. T.1: Termouprugost.  Kiev, Naukova Dumka. 57–123 (1987), (in Russian).
  7. Podstrigach Ya. S., Koljano Ju. M.  Generalized thermomechanics.  Kiev, Naukova Dumka. 277–291 (1976), (in Russian).
  8. Singh S., Jain P. K., Rizwan-uddin.  Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere.  J. Heat Trans.  138 (10), 101301 (2016).
  9. Musii R., Melnyk N., Dmytruk V. Investigation of properties of contact connector of bimetallic hollow cylinder under the influence of electromagnetic pulse. Mathematical Modeling and Computing. 5 (2),
    193–200 (2018)
    .
  10. Lurie A. I.  Theory of Elasticity.  Berlin, Springer–Verlag (2005).