Змішанолігандний комплекс лантану(ііі) і алізарин-комплексону з флуоридом в міцелярному середовищі для спектрофотометричного визначення загального флуору

2020;
: сс. 1 - 6
1
Odesa I.I. Mechnikov National University
2
Odesa I.I. Mechnikov National University
3
Odesa I.I. Mechnikov National University

Розроблені методики прямого спектрофотометричного визначення загального флуору у продуктах для гігієни порожнини рота з використанням змішанолігандного комплексу La(III) та алізарин-комплексону з флуорид-йонами у присутності нейонної поверхнево-активної речовини. Встановлено, що у системі утворюється ряд комплексів різної стехіометрії та показано, що як аналітичну форму доцільно використовувати комплекс складу La:алізарин-комплексон:F- = 1:2:1, який у присутності Tween 80 характеризується молярним коефіцієнтом поглинання ε620 = 11000 моль•дм-3•см-1. Показано, що калібрувальний графік є лінійним в діапазоні концентрацій флуорид-йонів 0,06–0,5 мкг/мл. Запропоновано просту, швидку та чутливу методику для спектрофотометричного визначення F- з використанням алізарин-комплексонату лантану в присутності Tween 80, яку було апробовано на зразках зубних паст та ополіскувачах ротової порожнини.

  1. René A., Rocha R., Rojas D. et al.: J. Agric. Food Chem., 2013, 61,10708. https://doi.org/10.1021/jf403728r
  2. Švarc-Gajić J., Stojanović Z., Vasiljević I., Kecojević I.: J. Food Drug Anal., 2013, 21, 384. https://doi.org/10.1016/j.jfda.2013.08.006
  3. Amanlou M., Hosseinpour M., Azizian H. et al.: Iran. J. Pharm. Res., 2010, 9, 37.
  4. Yeager J., Miller M., Ramanujachary K.: Ind. Eng. Chem. Res., 2006, 45, 4525. https://doi.org/10.1021/ie060128a
  5. Rajković M., Novaković I.: J. Agricult. Sci., 2007, 52, 155.
  6. Marczenko Z., Balcerzak M.: Spektrofotometryczne Metody w Analizie Nieorganicznej. Wydawnictwo Naukowe PWN, Warszawa 1998.
  7. Adelantado J., Martinez V., Moreno A., Reig F.: Talanta, 1985, 32, 224. https://doi.org/10.1016/0039-9140(85)80067-9
  8. Lili Z., Xiaohong Z., Shikang W.: Chem. Lett., 2004, 33, 850. https://doi.org/10.1246/cl.2004.850
  9. Hu J., Whittaker M., Davis T., Quinn T.: ACS Macro Lett., 2015, 4, 236. https://doi.org/10.1021/mz500782r
  10. Kumar S., Luxami V., Kumar A.: Org. Lett., 2008, 10, 5549. https://doi.org/10.1021/ol802352j
  11. Barghouthi Z., Amereih S.: Am. J. Anal. Chem., 2012, 3, 651. https://doi.org/10.4236/ajac.2012.39085
  12. Pillai A., Varghese B., Madhusoodanan K.: Environ. Sci. Technol., 2012, 46, 404. https://doi.org/10.1021/es2028718
  13. Zhou X., Lai R., Li H., Stains C.: Anal. Chem., 2015, 87, 4081. https://doi.org/10.1021/acs.analchem.5b00430
  14. Amano O., Sasahira A., Kani Y. et al.: J. Nucl. Sci. Technol., 2004, 41, 55. https://doi.org/10.1080/18811248.2004.9715457
  15. Hall A., Walsh J.: Anal. Chim. Acta, 1969, 45, 341. https://doi.org/10.1016/S0003-2670(01)95608-9
  16. Paustovska A., Zinko L., Zaporozhets O. et al.: Methods Objects Chem Anal., 2015, 10, 53.
  17. Shtykov S.: J. Anal. Chem., 2000, 55, 608. https://doi.org/10.1007/BF02827992
  18. Schwarzenbach G., Flaschka H.: Die komplexometrische Titration. Ferdinand Enke, Stuttgart 1965.
  19. Holmberg К., Jönsson B., Kronberg В., Lindman В.: Surfactants and Polymers in Aqueous Solution. John Wiley & Sons, Ltd, Chichester 2002.
  20. Quintana M., Blanco M., Lacal J., Hernández L.: Talanta, 2003, 59, 417. https://doi.org/10.1016/S0039-9140(02)00519-2
  21. Chebotarev A., Snigur D., Bevziuk K.: Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017, 60, 22. https://doi.org/10.6060/tcct.2017603.5418