The utilization of fossil fuels is releasing previously carbon stored in the various carbon pools of the earth and increasing the global concentration of Carbon dioxide from an initial 280 parts per million in the 1850s to above 400 parts per million today. This review takes a look at previous works on carbon sequestration; its feasibility, potential and process. Increased carbon emission has disrupted the fragile balance in carbon content between the atmosphere and ocean which took thousands of years to attain. Aftermath of which includes increase global temperatures as well as other environmental problems. It has been projected that from 2025 up-wards; we would have exceeded our carbon budget at our current emission rates. Curtailing fossil fuel utilization alone will not suffice to save the planet unless something more drastic is done. Capturing anthropogenically produced carbon gas and discharging it into the ocean at a depth of 3000m where it sinks into the bottom of the ocean is recommended. Here, the oceans are expected to store about 59 times the carbon gas carrying capacity of the atmosphere. The need to speed up the slow natural process of sequestrating carbon in the ocean depth has never been more expedient. Research is recommended into understanding the oceans as a variegated system of interactions compared to terrestrial ecosystems.
1. Abbasi, T. & Abbasi, S. A. (2011). Renewable energy sources: Their impact on global warming and pollution. PHI Learning Pvt. Ltd. Retrieved from https://content.kopykitab.com/ebooks/2016/06/7725/sample/sample_7725.pdf
2. Adams, E., Akai, M., Alendal, G., Golmen, L., Haugan, P., Herzog, H., Masutani, S., Murai, S., Nihous, G., Ohsumi, T., Shirayama, Y., Smith, C., Vetter, E., & Wong, C.S. (2002). International field experiment on ocean carbon sequestration. Environmental Science and Technology, 36, (21), 395-470. doi: https://doi.org/10.1021/es022442b
https://doi.org/10.1021/es022442b
3. Adams, E., & Caldeira, K (2008). Ocean Storage of CO2. Elements, 4(5),319-324. doi: http://dx.doi.org/10.2113/gselements.4.5.319
4. Albritton, D. L., & Dokken, D. J. (2001). Climate change 2001: synthesis report (Vol. 397). R. T. Watson (Ed.). Cambridge, UK: Cambridge University Press. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/03/front-1.pdf
5. Balasubramanian., A. (2011). Atmosphere- Documentary. Educational Video Documentaries in Earth, Atmospheric and Ocean Sciences, July 2011. doi: https://doi.org/10.13140/RG.2.2.28235.80161
6. Batjes, N. H. (1996). Total Carbon and Nitrogen in soils of the world. European Journal of Soil Science. 47, 151–163. doi: https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
7. Bert, M., Ogunlade, D., Heleen, de. C., & Loss, L. M. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage (Eds) Cambridge University Press, UK.,431. Retrieved from https://www.ipcc.ch/pdf/special-reports/srccs/srccs_chapter6.pdf accessed 9/2/ 2020
8. Clarke, T. (2001). Taming Africa's killer lake. Nature, 409 (6820), 554-556. Retrieved from https://eurekamag.com/research/009/993/009993233.php
https://doi.org/10.1038/35054609
9. Cowen, J.P., Stephen, G.J., Fabien, K. F., Paul, J.P., David, B., Michael, S.R., Michael, H., & Phyllis, L. (2003). Fluids from aging ocean crust the support microbial life. Science, 299, 120-123. doi: http://dx.doi.org/10.1126/science.1075653
https://doi.org/10.1126/science.1075653
10. Eric, E., & Colder, K. (2008). Ocean Storage of CO2. Elements, 4, 319. Retrieved from https://people.ucsc.edu/~mdmccar/migrated/ocea213/readings/15_GeoEngineer/C_sequestration/adams_2008_Elements_CALDERIA_Ocean_CO2_Storeage.pdf accessed 14 May 2018
https://doi.org/10.2113/gselements.4.5.319
11. David, H. (2018). Ocean Storage of CO2. The Liquid Grid. Retrieved from https://www.maritime-executive.com/features/ocean-storage-of-co2
12. Department of Trade and Industry. (2000). Carbon Dioxide Capture and Storage. Publ. UK Department of Trade and Industry, Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploa...
13. Dlugokencky, D. (2020). Climate Change: Atmospheric Carbon Dioxide. Retrieved from https://www.climate.gov/news-features/understanding-climate/climate-change atmospheric-carbon-dioxide accessed 10/12/ 2021
14. Friedlingstein, P., O’Sullivan, M., & Jones, M. W. (2020). Global Carbon Budget 2020. Earth Syst. Sci. Data, 12(4), 3269–3340. doi: https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/10.5194/essd-12-3269-2020
15. Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackkenzie, F.T., Morre, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., & Steffen, W. (2000). The global carbon cycle: a test of our knowledge of earth as a system. Science, 290, 291–296. doi: https://doi.org/10.1126/science.290.5490.291
https://doi.org/10.1126/science.290.5490.291
16. Flux, C., & Year, I. (2008). Carbon sequestration to mitigate climate change. Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP).(1997). Report of the twenty-seventh session of GESAMP, Nairobi, Kenya, GESAMP Reports and Studies, No: 63. Publ. Retrieved from http://www.gesamp.org/site/assets/files/2205/rs107e-1.pdf
17. Haigh, J. (2017). A brief history of the Earth's CO2. Retrieved from https://www.bbc.com/news/science-environment-41671770
18. Heinze, S., Meyer, N., Goris, L., Anderson, R., Steinfeldt, N., Chang, C., Le Quéré, & Bakker, D. (2015). The ocean carbon sink – impacts, vulnerabilities and challenges. Earth Syst. Dynam., 6 (1), 327–358. doi: https://doi.org/10.5194/esd-6-327-2015
https://doi.org/10.5194/esd-6-327-2015
19. International Energy Agency, Greenhouse Gas Research and Development Programme. (2007). Storing CO2 Underground, 10. Retrieved from https://ieaghg.org/docs/general_publications/storingCO.pdf
20. Herzog, H. J. (1998). Ocean sequestration of CO2: an overview. In Proceedings of the AWMA’s Second International Specialty Conference, Oct 13-15, 1998, Washington, DC. Retrieved from http://web.mit.edu/energylab/www/pubs/overview.PDF
21. Houghton, E. (1996). Climate change 1995: The science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change,2. Cambridge University Press. Retrieved from https://www.ipcc.ch/report/ar2/wg1/
22. Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., & Azam, F. (2010). Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean.Nature Reviews Microbiology, 8(8), 593-599. Retrieved from https://www.nature.com/articles/nrmicro2386
https://doi.org/10.1038/nrmicro2386
23. John, H. S., Steve, A. T., & Karl, K. T. (2009). Elements of Physical Oceanography: A derivative of the Encyclopedia of Ocean Sciences. Academic Press, Science. Retrieved from https://www.nhbs.com/elements-of-physical-oceanography-book
24. Johnston, P., & Santillo, D. (2002). Carbon Capture and Sequestration: Potential Environmental Impact. IPCC workshop on carbon dioxide capture and storage. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.6246&rep=r...
25. Kerr, R. A. (2007). Scientists tell policy makers we’re all warming the world. Science, 315, 754–757. doi: https://doi.org/10.1126/science.315.5813.754
https://doi.org/10.1126/science.315.5813.754
26. Kelemen, P.B., & Manning, C. E. (2015). Reevaluating carbon fluxes in subduction zones, what goes down, mostly goes up. Proceedings of the National Academy of Sciences of the United States of America, 112, E3997-E4006.. doi: https://doi.org/10.1073/pnas.1507889112
https://doi.org/10.1073/pnas.1507889112
27. Kling., J. W, Evans., W.C., Tuttle,M. L., & Tanyileke, G. (1994). Degassing of lake Nyos. Nature, 368, 405–406. Retrieved from https://www.nature.com/articles/368405a0
https://doi.org/10.1038/368405a0
28. Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815-830. doi: https://doi.org/10.1098/rstb.2007.2185
https://doi.org/10.1098/rstb.2007.2185
29. Majumdar, A., & Deutch, J. (2018). Research Opportunities for CO2 Utilization and Negative Emissions at the Gigatonne Scale. Joule 2 (5), 805-809. doi: https://doi.org/10.1016/j.joule.2018.04.018
https://doi.org/10.1016/j.joule.2018.04.018
30. Marchetti, C. (1977). On geoengineering and the CO2 problem. Climatic Change, 1, 59–68. doi: https://doi.org/10.1007/BF00162777
https://doi.org/10.1007/BF00162777
31. Matthews, B. (1996). Climate Engineering: A critical review of proposals, their scientific and politicalcontext, and possible impacts. A Report for Scientists for Global Responsibility.Publ. Universityof East Anglia, Norwich, UK. Retrieved from http://www.chooseclimate.org/cleng/part1.html
32. National Academy of Engineering and National Research Council.(2003).The Carbon Dioxide Dilemma: Promising Technologies and Policies. Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/10798
https://doi.org/10.17226/10798
33. National Aeronautic Space Administration. (2011). Effects of Changing the Carbon Cycle. Retrieved from https://earthobservatory.nasa.gov/features/CarbonCycle/page5.php
34. National Oceanic and Atmospheric Administration. (2018). Pacific Marine Environmental Laboratory. Retrieved from https://www.pmel.noaa.gov/co2/story/Ocean+Acidificationaccessed 03/10/2018
35. National Oceanic and Atmospheric Administration. (2018). What is eutrophication? National Ocean Service website, How much of the Ocean have we explored? Retrieved from https://oceanservice.noaa.gov/facts/exploration.html accessed 6/10/2018
36. Ormerod, W. G., Freund, P., & Smith, A. (2002).Why is the ocean of interest as a sink for anthropogenic CO2? IEA Greenhouse Gas R&D Programme,5-15. Retrieved from https://archive.ipcc.ch/pdf/supporting-material/ipcc-workshop-proceeding...
37. Orr, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L., Toggweiler, J. R., & Boutin, J. (2001). Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models.Global Biogeochemical Cycles, 15(1), 43–60. doi: https://doi.org/10.1029/2000gb001273
https://doi.org/10.1029/2000GB001273
38. Paul, J., & Santillo, D. (2002). Carbon Capture and Sequestration: Potential Environmental Impact. IPCC workshop on carbon dioxide capture and storage, 113. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.6246&rep=r...
39. Roberts, C.M. (2002). Deep impact: The rising toll of fishing in the deep sea. Trends in Ecology and Evolution, 17 (5), 242-245. doi: https://doi.org/10.1016/S0169-5347(02)02492-8
https://doi.org/10.1016/S0169-5347(02)02492-8
40. Savacool, B.K. (2008). Valuing the Greenhouse Emissions from Nuclear Power: A critical survey. Energy Policy, 36 (8), 2950-2963. doi: https://doi.org/10.1016/j.enpol.2008.04.017
https://doi.org/10.1016/j.enpol.2008.04.017
41. Schnitzer, M. (1991). Soil organic mater- the next 75 years. Soil Sci.,151,41–58. doi: https://doi.org/10.1097/00010694-199101000- 00008
https://doi.org/10.1097/00010694-199101000-00008
42. Schrag, D. P. (2007) Preparing to capture carbon. Science, 315, 812–813. doi: https://doi.org/10.1126/science.1137632
https://doi.org/10.1126/science.1137632
43. Stocker, T. F. (2013). Close Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Union of Concerned Scientists. Retrieved from https://www.ucsusa.org/ accessed 6/6/2020
45. Thomas, E., & Rudiger, P. (2010). The Carbon-Budget Approach to Climate Stabilization: Cost-Effective Subglobal Versus Global Action. CESifo Working Paper Series, 3232. doi: http://dx.doi.org/10.2139/ssrn.1705107
https://doi.org/10.2139/ssrn.1705107
46. Topham S. (2000). Ullmann's Encyclopedia of Industrial Chemistry. Wiley‐VCH Verlag GmbH & Co. KGaA. doi: https://doi.org/10.1002/14356007
https://doi.org/10.1002/14356007
47. World Population Prospect. (2019). Retrieved from https;//population.un.org/wpp/ accessed 12/8/2020