In this paper, we utilize a time-fractional diffusion equation for image denoising and signal smoothing. A discretization of our model is provided. Numerical results show some remarkable results with a great performance, visually and quantitatively, compared to some well known competitive models.
- Ben-loghfyry A., Hakim A. Robust time-fractional diffusion filtering for noise removal. Mathematical Methods in the Applied Sciences. 1–17 (2022).
- El Alaoui El Fels A., Ben-loghfyry A., El Ghorfi M. Performance of denoising algorithms in the improvement of lithological discrimination. Modeling Earth Systems and Environment. 1–8 (2022).
- Hakim A., Ben-Loghfyry A. A total variable-order variation model for image denoising. AIMS Mathematics. 4 (5), 1320–1335 (2019).
- Pan H., Wen Y. W., Zhu H. M. A regularization parameter selection model for total variation based image noise removal. Applied Mathematical Modelling. 68, 353–367 (2019).
- Laghrib A., Ben-Loghfyry A., Hadri A., Hakim A. A nonconvex fractional order variational model for multi-frame image super-resolution. Signal Processing: Image Communication. 67, 1–11 (2018).
- Hakim M., Ghazdali A., Laghrib A. A multi-frame super-resolution based on new variational data fidelity term. Applied Mathematical Modelling. 87, 446–467 (2020).
- Baloochian H., Ghaffary H. R., Balochian S. Enhancing fingerprint image recognition algorithm using fractional derivative filters. Open Computer Science. 7 (1), 9–16 (2017).
- Ferrah I., Chaou A. K., Maadjoudj D., Teguar M. Novel colour image encoding system combined with ANN for discharges pattern recognition on polluted insulator model. IET Science, Measurement & Technology. 14, 718–725 (2020).
- Nasreddine K., Benzinou A., Fablet R. Signal and image registration: Application to decrypt marine biological archives. Traitement du Signal. 26 (4), 255–268 (2009).
- Frohn-Schauf C., Henn S., Witsch K. Multigrid based total variation image registration. Computing and Visualization in Science. 11 (2), 101–113 (2008).
- Alaa H., Alaa N. E., Aqel F., Lefraich H. A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement. Mathematical Modeling and Computing. 9 (2), 187–202 (2022).
- Alaa K., Atouni M., Zirhem M. Image restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing. 8 (3), 549–559 (2021).
- Guichard F., Moisan L., Morel J. M. A review of PDE models in image processing and image analysis. Journal de Physique IV. 12 (1), 137–154 (2002).
- Chan T. F., Shen J., Vese L. Variational PDE models in image processing. Notices of the American Mathematical Society. 50 (1), 14–26 (2003).
- Aubert G., Kornprobst P. Mathematical problems in image processing: partial differential equations and the calculus of variations. Vol. 147. Springer Science & Business Media (2006).
- Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence. 12 (7), 629–639 (1990).
- Catté F., Lions P. L., Morel J. M., Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical analysis. 29 (1), 182–193 (1992).
- Weickert J. Applications of nonlinear diffusion in image processing and computer vision. Acta Math. Univ. Comenianae. 70 (1), 33–50 (2001).
- Sabatier J., Agrawal O. P., Machado J. T. Advances in fractional calculus. Vol. 4. Springer (2007).
- Machado J. T., Kiryakova V. The chronicles of fractional calculus. Fractional Calculus and Applied Analysis. 20 (2), 307–336 (2017).
- Yang Q., Chen D., Zhao T., Chen Y. Fractional calculus in image processing: a review. Fractional Calculus and Applied Analysis. 19 (5), 1222–1249 (2016).
- Uchaikin V. V. On time-fractional representation of an open system response. Fractional Calculus and Applied Analysis. 19 (5), 1306 (2016).
- Chang A., Sun H. Time-space fractional derivative models for CO$_2$ transport in heterogeneous media. Fractional Calculus and Applied Analysis. 21 (1), 151–173 (2018).
- Zhao X., Sun Z. Z. Time-fractional derivatives. Numerical Methods. 3, 23–48 (2019).
- Oliveira D. S., de Oliveira E. C. On a Caputo-type fractional derivative. Advances in Pure and Applied Mathematics. 10 (2), 81–91 (2019).
- Li C., Qian D., Chen Y. On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society. 2011, 562494 (2011).
- Weickert J. Anisotropic diffusion in image processing. Vol. 1. Teubner Stuttgart (1998).
- Zhang J., Chen K. A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM Journal on Imaging Sciences. 8 (4), 2487–2518 (2015).
- Rudin L. I., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena. 60 (1–4), 259–268 (1992).