Study of two species prey–predator model in imprecise environment with harvesting scenario

This study proposes and explores a prey–predator model that presents a functional response to group behavior of prey–predator harvesting.  We study a non-linear model of prey–predator growths in two species.  The proposed model is supported by theoretical and numerical results.  Some numerical descriptions are provided to help our analytical and theoretical conclusions.  For all possible parameter values occurring in a prey–predator system, we solved it by using both VIM (variational iteration method) and HPM (homotopy perturbation method).  We also used MATLAB coding to compare our approximate analytical expressions with numerical simulations.  We have found that there is no significant difference when comparing analytical and numerical results.

  1. Liu L., Meng X.  Optimal harvesting control and dynamics of two-species stochastic model with delays.  Advances in Difference Equations. 2017, Article number: 18 (2017).
  2. Souna F., Lakmechea A., Djilali S.  Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting.  Chaos, Solitons & Fractals. 140, 110180 (2020).
  3. Liu G., Wang X., Meng X., Gao S.  Extinction and persistence in mean of a novel delay impulsive stochastic infected predator-prey system with jumps.  Complexity. 2017, 1950970 (2017).
  4. Bian F., Zhao W., Song Y., Yue R.  Dynamical analysis of a class of prey-predator model with Beddington-Deangelis functional response, stochastic perturbation, and impulsive toxicant input.  Complexity. 2017, 3742197 (2017).
  5. Sahoo B., Das B., Samanta S.  Dynamics of harvested-predator–prey model: role of alternative resources.  Modeling Earth Systems and Environment. 2, 140 (2016).
  6. Vijayalakshmi T., Senthamarai R.  An analytical approach to the density dependent prey-predator system with Beddington – deangelies functional response.  AIP Conference Proceedings. 2112, 020077 (2019).
  7. Meng X.-Y., Qin N.-N., Huo H.-F.  Dynamics analysis of a predator–prey system with harvesting prey and disease in prey species.  Journal of Biological Dynamics. 12, 342–374 (2018).
  8. Das K.  A study of harvesting in a predator–prey model with disease in both populations.  Mathematical Methods in the Applied Sciences. 39, 2853–2870 (2016).
  9. Senthamarai R., Vijayalakshmi T.  An analytical approach to top predator interference on the dynamics of a food chain model.  Journal of Physics: Conference Series. 1000, 012139 (2018).
  10. Das A., Pal M.  Theoretical analysis of an imprecise prey-predator model with harvesting and optimal control.  Journal of Optimization. 2019, 9512879 (2019).
  11. Van Voorn G. A. K., Kooi B. W.  Combining bifurcation and sensitivity analysis for ecological models.  The European Physical Journal Special Topics. 226, 2101–2118 (2017).
  12. Yu D.-N., He J.-H., Garcia A. G.  Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators.  Journal of Low Frequency Noise, Vibration and Active Control. 38 (3–4), 1540–1554 (2019).
  13. Shirejini S. Z., Fattahi M.  Mathematical modeling and analytical solution of two-phase flow transport in an immobilized-cell photo bioreactor using the homotopy perturbation method (HPM).  International Journal of Hydrogen Energy. 41 (41), 18405–18417 (2016).
  14. Sivakumar M., Senthamarai R.  Mathematical Model of Epidemics: SEIR Model by using Homotopy Perturbation Method.  AIP Conference Proceedings. 2112, 020080 (2019).
  15. Nivethitha M., Senthamarai R.  Analytical approach to a steady-state predator-prey system of Lotka–Volterra model.  AIP Conference Proceedings. 2277, 210005 (2020).
  16. Sivakumar M., Senthamarai R.  Mathematical model of epidemics: Analytical approach to SIRW model using homotopy perturbation method.  AIP Conference Proceedings. 2277, 1–8 (2020).
  17. Vijayalakshmi T., Senthamarai R.  Application of homotopy perturbation and variational iteration methods for nonlinear imprecise prey–predator model with stability analysis.  The Journal of Supercomputing. 78, 2477–2502 (2021).               
  18. Ghorbani A.  Approximate solution of delay differential equations via variational iteration method.  Nonlinear science letters. A, Mathematics, physics and mechanics. 8 (2), 236–239 (2017).
  19. Anjum N., He J.-H.  Laplace transform: Making the variational iteration method easier.  Applied Mathematics Letters. 92, 134–138 (2019).
  20. Senthamarai R., Saibavani T. N.  Substrate mass transfer: analytical approach for immobilized enzyme reactions.  Journal of Physics: Conference Series. 1000, 012146 (2018).
Mathematical Modeling and Computing, Vol. 9, No. 2, pp. 385–398 (2022)