CLEANING OF GAS EMISSIONS BY BIOLOGICAL METHOD

EP.
2022;
: cc.147-153
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The paper shows the possibility of using chlorophyll-synthesizing microalgae of Chlorella Vulgaris to purify biogas from carbon dioxide (CO2), hydrogen sulfide (H2S) and ammonia (NH3). Experimental dependences of the dynamics of CO2 uptake by microalgae under the action of H2S inhibitor and NH3 activator are presented. A mathematical description of the growth of biomass of microalgae Chlorella Vulgaris depending on the concentration of hydrogen sulfide and ammonia was obtained. The optimal values of hydrogen sulfide and ammonia concentration for the efficient process of carbon dioxide uptake by chlorophyll-synthesizing microalgae Chlorella Vulgaris from biomethanization gas have been established.

1. Awe, O.W., Zhao, Y., Nzihou, A., Nzihou, A., Minh, D.P., & Lyczko, N. (2017). A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valor, 8. 267-283. doi: https://doi.org/10.1007/s12649-016-9826-4

https://doi.org/10.1007/s12649-016-9826-4

2. Bailón Allegue, L., & Hinge, J. (2014). Biogas upgrading Evaluation of methods for H2S removal. Danish Technological Centre. Copenhagen.

3. Dyachok, V., Huhlych, S., Katysheva, V., & Mandryk, S. (2021). About the Optimal Ratio Inhibitor and Activators of Carbon Dioxide Sorption Process by Using Chlorophyll-synthesizing Chlorella microalgae. Journal of Ecological Engineering , 22(5), 26–31. doi: https://doi.org/10.12911/22998993/135900

https://doi.org/10.12911/22998993/135900

4. Chlorella in sewage treatment.(2020). Retrieved from https://hlorella.jimdo.com/

5. Dyachok, V., Huhlych, S., Katysheva, V., & Mandryk, S. (2017). Absorption of carbon dioxide from a mixture of air with sulfur dioxide (in Ukrainian). Naukovi Pratsi Onakht, 81(1), 59-65. Retrieved from http://journals.uran.ua/swonaft

6. Dyachok,V.V., Mandryk, S.T., Huhlych, S.I., & Slyvka, M.M. (2020). Study on the impact of activators in the presence of an inhibitor on the dynamics of carbon dioxide absorption by chlorophyll-synthesizing microalgae. Journal of Ecological Engineering, 21(5), 189-196. doi: https://doi.org/10.12911/22998993/122674

https://doi.org/10.12911/22998993/122674

7. Kaltschmitt, M., Hartmann, H., & Hofbauer, H. (2016). Energie aus Biomasse. Grundlagen, Techniken und Verfahren. 3rd ed. Berlin: Springer. Retrieved from https://www.openagrar.de/receive/openagrar_mods_00022991

https://doi.org/10.1007/978-3-662-47438-9

8. Manakov, M.N., & Pobedimskiy, D.H. (1990). Theoretical bases technology of microbiological productions technology. Ahropromisdat.

9. 67% of greenhouse gas emissions are caused by energy and burning of fossil fuels (in Ukrainian). (2020). Ofitsiyhyy portal Ministerstva zakhystu dovkilla i pryrodnykh resursiv Ukrainy. Retrieved from: https://mepr.gov.ua/news/34553.htm.

10. Poltorak, O.M., & Chukhray, O.S. (1972). Physicochemical bases of enzymatic catalysis.

11. Zolotaryova, O.K., Shnyukova, Ye.I., Syvash, O.O., & Mykhaylenko, N.F. (2008). Prospects for the use of microalgae in biotechnology. In: O.K. Zolotaryovoa (Ed.) Alterpres, 234.