Properties of fundamental solutions, correct solvability of the Cauchy problem and integral representations of solutions for ultraparabolic Kolmogorov-type equations with three groups of spatial variables and with degeneration on the initial hyperplane

Some properties of the fundamental solution of the Cauchy problem for homogeneous ultraparabolic Kolmogorov–type equation with three groups of spatial variables including two groups of degeneration and with degeneration on the initial hyperplane are established. For different type of degeneration on the initial hyperplane the theorems on integral representations of solutions and correct solvability of the Cauchy problem are presented.  These results for such type of equations are obtained in appropriate classes of weight functions.

  1. Kolmogoroff A. N.  Zufällige Bevegungen (Zur Theorie der Brownshen Bewegung).  Annals of Mathematics.  35 (1), 116–117 (1934).
  2. Protsakh N. P., Ptashnyk B. Yo.  Nonlinear ultraparabolic equations and variational inequalities.  Naukova Dumka, Kyiv (2017), (in Ukrainian).
  3. Citti G., Pascucci A., Polidoro S.  On the regularity of solutions to a nonlinear ultraparabolic equations arising in mathematical finance.  Differential and Integral Equations.  14 (6), 701–738 (2001).
  4. Di Franchesco M., Pascucci A.  On a class of degenerate parabolic equations of Kolmogorov type.  Applied Mathematics Research eXpress.  2005 (6), 77–116 (2005).
  5. Di Franchesco M., Pascucci A.  A continuous  dependence result for ultraparabolic equations in option pricing.  Journal of Mathematical Analysis and Applications.  336 (2), 1026–1041 (2007).
  6. Foschi P., Pascucci A.  Kolmogorov equations arising in finance: direct and inverse problem.  Lecture notes of Seminario Interdisciplinare di Matematica.  Universita delgi studi della Basilicata.  1, 145–156 (2007).
  7. Ivashyshen S. D., Medynsky I. P.  The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes.  Theory of Stochastic Processes. 16(32) (1), 57–66 (2010).
  8. Lanconelli E., Pascucci A.  On a class of hypoelliptic evolution  equations.  Rend. Sem. Mat. Univ. Politec. Torino. 52 (1), 29–63 (1994).
  9. Pascucci A.  Kolmogorov equations in physics and finance.  Progress in Nonlinear Differential Equations and Their Applications.  63, 313–324 (2005).
  10. Polidoro S.  A Global Lower Bound for the Fundamental Solution of Kolmogorov–Fokker–Planck Equations.  Archive for Rational Mechanics and Analysis.  137, 321–340 (1997).
  11. Eidelman S. D., Kochubei A. N., Ivasyshen S. D.  Analytic methods in the theory of differential and pseudo-differential equations of parabolic type.  Operator Theory: Advances and Applications. 152. Birkhauser, Basel (2004).
  12. Ivashyshen S. D., Medynsky I. P.  On applications of the Levi method in the theory of parabolic equations.  Matematychni Studii.  47 (1), 33–46 (2017).
  13. Ivashyshen S. D., Medynsky I. P.  The classical fundamental solution of a degenerate Kolmogorov's equation with coefficients independent on variables of degeneration.  Bukovinian Mathematical Journal. 2 (2–3), 94–106 (2014), (in Ukrainian).
  14. Ivasyshen S. D., Medyns'kyi I. P.  Classical fundamental solutions of the Cauchy problem for ultraparabolic equations of Kolmogorov type with two groups of spatial variables.  Diff. equations and related topics. Proceedings of Institute of Mathematics NAS of Ukraine. 13 (1), 108–155 (2016), (in Ukrainian).
  15. Ivasyshen S. D., Medyns'kyi I. P.  On the classical fundamental solutions of the Cauchy problem for ultraparabolic Kolmogorov–type equations with two groups of spatial variables. Journal of Mathematical Sciences. 231 (4), 507–526 (2018).
  16. Ivasyshen S. D., Medyns'kyi I. P.  Classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov–type equations with two qroups of spatial variables of degeneration.  I. Journal of Mathematical Sciences.  246 (2), 121–151 (2020).
  17. Ivasyshen S. D., Medyns'kyi I. P.  Classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov–type equations with two qroups of spatial variables of degeneration.  II. Journal of Mathematical Sciences.  247 (1), 1–23 (2020).
  18. Voznyak O. G., Ivashyshen S. D., Medynsky I. P.  On fundamental solution of the Cauchy problem for ultra-parabolic Kolmogorov's equation with degeneration on the initial hyperplane.  Bukovinian Mathematical Journal.  3 (3–4), 41–51 (2015), (in Ukrainian).