MHD flow of hybrid nanofluid past a stretching sheet: double stratification and multiple slips effects

Studies of hybrid nanofluids flowing over various physical geometries and conditions are popular among researchers to understand the behavior of these fluids.  Thenceforth, the numerical solutions for hybrid Ag-CuO/H$_2$O nanofluid flow over a stretching sheet with suction, magnetic field, double stratification, and multiple slips effects are analyzed in the present study.  Governing equations and boundary conditions are introduced to describe the flow problem.  Then, similarity variables are applied to transform the equations into non-linear ordinary differential equations and boundary conditions.  The numerical computation for the problem is done in Matlab (bvp4c solver), and the results are presented in tables and graphs.  It is found that the rise in solutal slip and stratification parameters reduces the Sherwood number.  Meanwhile, the increase in thermal slip and stratification parameters lowers the Nusselt number.  The skin friction coefficient is observed to increase with the augmentation of the hydrodynamic slip parameter.

  1. Shanmugapriya M., Sundareswaran R., Senthil Kumar P.  Heat and mass transfer enhancement of MHD hybrid nanofluid flow in the presence of activation energy.  International Journal of Chemical Engineering.  2021, 9473226 (2021).
  2. Hayat T., Nadeem S.  Heat transfer enhancement with Ag-CuO/water hybrid nanofluid.  Results in Physics.  7, 2317–2324 (2017).
  3. McCash L. B., Zehra I., Al-Zubaidi A., Amjad M., Abbas N., Nadeem S.  Combined effects of binary chemical reaction/activation energy on the flow of Sisko fluid over a curved surface.  Crystals.  11 (8), 967 (2021).
  4. Gangadhar K., Edukondala Nayak R., Venkata Subba Rao M.  Buoyancy effect on mixed convection boundary layer flow of Casson fluid over a non linear stretched sheet using the spectral relaxation method.  International Journal of Ambient Energy.  43 (1), 1994–2002 (2022).
  5. Devi S. A., Devi S. S. U.  Numerical investigation of hydromagnetic hybrid Cu-Al$_2$O$_3$/water nanofluid flow over a permeable stretching sheet with suction.  International Journal of Nonlinear Sciences and Numerical Simulation.  17 (5), 249–257 (2016).
  6. Prakash M., Devi S.  Hydromagnetic hybrid Al$_2$O$_3$-Cu/water nanofluid flow over a slendering stretching sheet with prescribed surface temperature.  Asian Journal of Research in Social Sciences and Humanities.  6 (9), 1921–1936 (2016).
  7. Dinarvand S., Rostami M. N., Dinarvand R., Pop I.  Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet.  International Journal of Numerical Methods for Heat & Fluid Flow.  29 (11), 4408–4429 (2019).
  8. Aly E. H., Pop I.  MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid. Powder Technology.  367, 192–205 (2020).
  9. Jusoh R., Naganthran K., Jamaludin A., Ariff M. H., Basir M. F. M., Pop I.  Mathematical analysis of the flow and heat transfer of Ag-Cu hybrid nanofluid over a stretching/shrinking surface with convective boundary condition and viscous dissipation.  Data Analytics and Applied Mathematics (DAAM).  1 (1), 11–22 (2020).
  10. Wahid N. S., Md Arifin N., Turkyilmazoglu M., Hafidzuddin M. E. H., Abd Rahmin N. A.  MHD hybrid Cu-Al$_2$O$_3$/water nanofluid flow with thermal radiation and partial slip past a permeable stretching surface: analytical solution.  Journal of Nano Research.  64, 75–91 (2020).
  11. Shoaib M., Raja M. A. Z., Sabir M. T., Islam S., Shah Z., Kumam P., Alrabaiah H.  Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet.  Scientific Reports.  10 (1), 18533 (2020).
  12. Sreedevi P., Sudarsana Reddy P., Chamkha A.  Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation.  SN Applied Sciences.  2 (7), 1222 (2020).
  13. Santhi M., Suryanarayana Rao K. V., Sudarsana Reddy P., Sreedevi P.  Heat and mass transfer characteristics of radiative hybrid nanofluid flow over a stretching sheet with chemical reaction.  Heat Transfer.  50 (3), 2929–2949 (2021).
  14. Khashi'ie N. S., Arifin N. M., Pop I., Nazar R., Hafidzuddin E. H., Wahi N.  Flow and heat transfer past a permeable power-law deformable plate with orthogonal shear in a hybrid nanofluid.  Alexandria Engineering Journal.  59 (3), 1869–1879 (2020).
  15. Khashi'ie N. S., Arifin N. M., Pop I., Nazar R., Hafidzuddin E. H., Wahi N.  Thermal marangoni flow past a permeable stretching/shrinking sheet in a hybrid Cu-Al$_2$O$_3$/water nanofluid.  Sains Malaysiana.  49 (1), 211–222 (2020).
  16. Wahid N. S., Arifin N. M., Khashi'ie N. S., Pop I., Bachok N., Hafidzuddin M. E. H.  Flow and heat transfer of hybrid nanofluid induced by an exponentially stretching/shrinking curved surface.  Case Studies in Thermal Engineering.  25, 100982 (2021).
  17. Venkateswarlu B., Satya Narayana P. V.  Cu-Al$_2$A$_3$/H$_2$O hybrid nanofluid flow past a porous stretching sheet due to temperature-dependent viscosity and viscous dissipation.  Heat Transfer.  50 (1), 432–449 (2021).
  18. Yahya A. U., Salamat N., Huang W. H., Siddique I., Abdal S., Hussain S.  Thermal charactristics for the flow of williamson hybrid nanofluid (MoS$_2$+ZnO) based with engine oil over a streched sheet.  Case Studies in Thermal Engineering.  26, 101196 (2021).
  19. Puneeth V., Manjunatha S., Madhukesh J. K., Ramesh G. K.  Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: A modified BuongiornoпїЅ's model aspects.  Chaos, Solitons & Fractals.  152, 111428 (2021).
  20. Kumar T. S.  Hybrid nanofluid slip flow and heat transfer over a stretching surface.  Partial Differential Equations in Applied Mathematics.  4, 100070 (2021).
  21. Roşca N. C., Pop I.  Hybrid nanofluids flows determined by a permeable power-law stretching/shrinking sheet modulated by orthogonal surface shear.  Entropy.  23 (7), 813 (2021).
  22. Kho Y. B., Jusoh R., Salleh M. Z., Mohamed M. K. A., Ismail Z., Hamid R. A.  Inclusion of viscous dissipation on the boundary layer flow of Cu-TiO$_2$ hybrid nanofluid over stretching/shrinking sheet.  Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.  88 (2), 64–79 (2021).
  23. Ibrahim W., Makinde O. D.  The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate.  Computers & Fluids.  86, 433–441 (2013).
  24. Hayat T., Nassem A., Khan M. I., Farooq M., Al-Saedi A.  Magnetohydrodynamic (MHD) flow of nanofluid with double stratification and slip conditions.  Physics and Chemistry of Liquids.  56 (2), 189–208 (2018).
  25. Sarojamma G., Lakshmi R. V., Sreelakshmi K., Vajravelu K.  Dual stratification effects on double-diffusive convective heat and mass transfer of a sheet-driven micropolar fluid flow.  Journal of King Saud University – Science.  32 (1), 366–376 (2020).
  26. Wahid N. S., Arifin N. M., Khashi'ie N. S., Pop I.  Hybrid nanofluid slip flow over an exponentially stretching/shrinking permeable sheet with heat generation.  Mathematics.  9 (1), 30 (2020).
  27. Rozeli N. S., Som A. N. M., Arifin N. M., Ali F. M., Abd Ghani A.  Double stratified MHD stagnation point slip flow over a permeable shrinking/stretching surface in a porous medium.  Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.  90 (2), 64–72 (2022).
  28. Khashi'ie N. S., Wahi N., Arifin N. M., Ghani A. A., Hamzah K. B.  Effect of suction on the MHD flow in a doubly-stratified micropolar fluid over a shrinking sheet.  Mathematical Modeling and Computing.  9 (1), 92–100 (2022).
  29. Buongiorno J.  Convective transport in nanofluids.  Journal of Heat Transfer.  128 (3), 240–250 (2005).
  30. Tiwari R. K., Das M. K.  Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids.  International Journal of Heat and Mass Transfer.  50 (9–10), 2002–2018 (2007).
  31. Mabood F., Usman H.  Multiple slips effects on MHD thermo-solutal flow in porous media saturated by nanofluid.  Mathematical Modelling of Engineering Problems.  6 (4), 502–510 (2019).
  32. Ijaz M., Ayub M.  Activation energy and dual stratification effects for Walter-B fluid flow in view of Cattaneo–Christov double diffusion.  Heliyon.  5 (6), E01815 (2019).
  33. Hayat T., Nawaz S., Alsaedi A., Rafiq M.  Mixed convective peristaltic flow of water based nanofluids with Joule heating and convective boundary conditions.  PLoS One.  11 (4), 0153537 (2016).
  34. Keskin A. Ü.  Solution of BVPs using bvp4c and bvp5c of MATLAB.  In: Boundary Value Problems for Engineers.  Springer, Cham (2019).
  35. Sudarsana Reddy P., Sreedevi P.  Impact of chemical reaction and double stratification on heat and mass transfer characteristics of nanofluid flow over porous stretching sheet with thermal radiation.  International Journal of Ambient Energy.  43 (1), 1626–1636 (2022).
  36. Yahaya R. I., Arifin N. M., Nazar R. M., Pop I.  Oblique stagnation-point flow past a shrinking surface in a Cu-Al$_2$O$_3$/H$_2$O hybrid nanofluid.  Sains Malaysiana.  50 (10), 3139–3152 (2021).
  37. Pantokratoras A.  A common error made in investigation of boundary layer flows.  Applied Mathematical Modelling.  33 (1), 413–422 (2009).
  38. Srinivasacharya D., Surender O.  Effect of double stratification on mixed convection boundary layer flow of a nanofluid past a vertical plate in a porous medium.  Applied Nanoscience. 5 (1), 29–38 (2015).
  39. Sarojamma G., Lakshmi R. V., Sreelakshmi K., Vajravelu K.  Dual stratification effects on double-diffusive convective heat and mass transfer of a sheet-driven micropolar fluid flow.  Journal of King Saud University – Science.  32 (1), 366–376 (2020).
  40. Khashi'ie N. S., Arifin N. M., Rashidi M. M., Hafidzuddin E. H., Wahi N.  Magnetohydrodynamics (MHD) stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous medium.  Journal of Thermal Analysis and Calorimetry.  139 (6), 3635–3648 (2020).
  41. Khashi'ie N. S., Hafidzuddin E. H., Arifin N. M., Wahi N.  Stagnation point flow of hybrid nanofluid over a permeable vertical stretching/shrinking cylinder with thermal stratification effect.  CFD Letters.  12 (2), 80–94 (2020).