Impact of magnetohydrodynamic on hybrid nanofluid flow with slip and heat source over an exponentially stretchable/shrinkable permeable sheet
This research examines the hybrid nanofluid alumina-copper/water flow over a permeable sheet, considering slip, magnetohydrodynamics, and heat source. To analyze the system, the model is transformed into nonlinear ordinary differential equations (ODEs) via the similarity transformation. Numerical solutions are attained through the implementation of the bvp4c function in MATLAB. The study analyzes velocity and temperature profiles, local skin friction, and Nusselt number for various parameters. Moreover, the impact of magnetohydrodynamics on the system is explored.