In this paper, we study the regularity results for entropy solutions of a class of parabolic nonlinear parabolic equations with degenerate coercivity, when the right-hand side is in $L^{m}$ with $m>1$.
- Li F. Regularity for entropy solution of a class of parabolic equations with irregular data. Commentationes Mathematicae Universitatis Carolinae. 48 (1), 69–82 (2007).
- Prignet A. Existence and uniqueness of "entropic" solutions of parabolic problems with $L^{1}$ data. Nonlinear Analysis: Theory, Methods & Applications. 28 (12), 1943–1954 (1997).
- Segura de León S, Toledo J. Regularity for entropy solutions of parabolic $p$-Laplacian equations. Publicacions Matemàtiques. 43 (2), 665–683 (1999).
- Blanchard D., Murat F. Renormalised solutions of nonlinear parabolic problems with $L^{1}$ data: existence and uniqueness. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 127 (6), 1137–1152 (1997).
- Li F. Existence and regularity results for some parabolic equations with degenerate coercivity. Annales Academiæ Scientiarum Fennicæ Mathematica. 37, 605–633 (2012).
- Mokhtari F., Khelifi H. Regularity results for degenerate parabolic equations with $L^{m}$ data. Complex Variables and Elliptic Equations. 1–15 (2022).
- Bénilan P. H., Boccardo L., Gallouët T., Gariepy R, Pierre M, Vazquez J. L. An $L^{1}$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Serie 4. 22 (2), 241–273 (1995).
- Boccardo L, Dall'Aglio A, Orsina A. Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Del Seminario Matematico E Fisico Universita Di Modena. 46, 51–81 (1998).
- Bénilan P. H, Brezis H, Crandall M. G. A semilinear equation in $L^1 (\mathbb {R}^N)$. Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Serie 4. 2 (4), 523–555 (1975).
- Lions J. L. Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod, Paris (1969).
- Simon J. Compact sets in the space $L^{p}(0,T;B)$. Annali di Matematica Pura ed Applicata. 146, 65–96 (1987).
- Porretta A. Exestence results for nonlinear parabolic equations via strong convergence of truncations. Annali di Matematica Pura ed Applicata. 177, 143–172 (1999).
- Di Benedetto E. Degenerate parabolic equations. Springer–Verlag, New York (1993).