European option pricing under model involving slow growth volatility with jump

In this paper, we suggest a new model for establishing a numerical study related to a European options pricing problem  where assets' prices can be described by a stochastic equation with a discontinuous sample path (Slow Growth Volatility with Jump SGVJ model) which uses a non-standard volatility.  A special attention is given to characteristics of the proposed model represented by its non-standard volatility defined by the parameters $\alpha$ and $\beta$.  The mathematical modeling in the presence of jump shows that one has to resort to a degenerate partial integro-differential equation (PIDE) which the resolution of this one gives a price of the European option as a function of time, price of the underlying asset and the instantaneous volatility.  However, in general, an exact or closed solution to this problem is not available.  For this reason we approximate it using a finite difference method.  At the end of the paper, we present some numerical and comparison results with some classical models known in the literature.

  1. Black F., Scholes M.  The pricing of options and corporate liabilities.  Journal of Political Economy.  81 (3), 637–654 (1973).
  2. Merton R. C.  Theory of rational option pricing.  The Bell Journal of Economics and Management Science.  4 (1), 141–183 (1973).
  3. Fengler M. R.  Option data and modelling BSM implied volatility.  In: J.-C. Duan, J. E Gentle, W. Härdle.  Handbook of computational finance.  Spinger, Berlin, Heidelberg (2012).
  4. Cont R., Tankov P.  Financial modelling with jump processes.  Chapman and Hall/CRC, Boca Raton, FL (2004).
  5. Mandelbrot B., Fisher A., Calvet L.  A Multifractal Model of Asset Returns.  Cowles Foundation Discussion Paper N.1164,  Cowles Foundation for Research in Economics. Yale University (1997).
  6. Heyde C. C.  A Risky asset model with strong dependence through fractal activity time.  Journal of Applied Probability.  36 (4), 1234–1239 (1999).
  7. Barndorff-Nielsen O. E., Shephard N.  Non-Gaussian Ornstein–Uhlenbeck based models and some of their uses in financial economics (with discussion).  Journal of the Royal Statistical Society; Series B.  63 (2), 167–241 (2001).
  8. Comte F., Renault E.  Long memory in continuous-time stochastic volatility models.  Mathematical Finance.  8 (4), 291–323 (1998).
  9. Gatheral J., Jaisson T., Rosenbaum M.  Volatility is rough.  Quantitative Finance.  18 (6), 933–949 (2018).
  10. Ibrahim S. N. I., Laham M. F.  Call warrants pricing formula under mixed-fractional Brownian motion with Merton jump-diffusion.  Mathematical Modeling and Computing.  9 (4), 892–897 (2022).
  11. Yanishevskyi V. S., Nodzhak L. S.  Fractional Brownian motion in financial engineering models.  Mathematical Modeling and Computing.  10 (2), 445–457 (2023).
  12. Yanishevskyi V. S., Baranovska S. P.  Path integral method for stochastic equations of financial engineering.  Mathematical Modeling and Computing.  9 (1), 166–177 (2022).
  13. Merton R. C.  Options pricing when underlying stock returns are discontinuous.  Journal of Financial Economics.  3 (1–2), 125–144 (1976).
  14. Kou S. G.  A jump-diffusion model for Option pricing.  Management Science.  48 (8), 1086–1101 (2002).
  15. Andersen L., Andreasen J.  Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing.  Review of Derivatives Research.  3, 231–262 (2000).
  16. Carr P., Geman H., Madan D. B., Yor M.  The Fine Structure of Asset Returns: An Empirical Investigation.  Journal of Business.  75 (2), 305–332 (2002).
  17. Hull J., White A.  The Pricing of Options on Assets with Stochastic Volatilities.  Journal of Finance.  42 (2), 281–300 (1987).
  18. Gouriéroux C.  ARCH Models and Financial Applications.  Springer, New York (1997).
  19. Heston S.  A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Option.  Review of Financial Studies.  6 (2), 327–343 (1993).
  20. Yang Y., Liu S., Wu Y., Wiwatanapataphee B.  Pricing of volatility derivatives in a Heston-CIR model with Markov-modulated jump diffusion.  Journal of Computational and Applied Mathematics.  393, 113277 (2021).
  21. Sawal A. S., Ibrahim S. N. I., Roslan T. R. N.  Pricing equity warrants with jumps, stochastic volatility, and stochastic interest rate.  Mathematical Modeling and Computing.  9 (4), 882–891 (2022).
  22. Cox J. C.  Notes on Option Pricing I: Constant Elasticity of Diffusions.  Reprinted in the Journal of Portfolio Management.  23, 15–17 (1975).
  23. Abaoud M. A.  Valuation of options under a constant elasticity of variance process and stochastic volatility.  Quantitative Finance.  21 (8), 1301–1307 (2021).
  24. Benjaouad A., Alaoui M. K., Meskine D., Souissi A.  Option pricing under model involving slow growth volatility.  International Journal of Computer Mathematics.  88 (13), 2770–2781 (2011).
  25. Briani M., La Chioma C., Natalini R.  Convergence of numerical schemes for viscosity solution to integro-differential degenerate parabolic problems arising in finance theory.  Numerische Mathematik.  98 (4), 607–646 (2004).
Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 889–898 (2023)