Сorrosion protection with the help of inhibitors from renewable raw materials. Review

The article provides information about corrosion problems in the oil refining industry and the scale of losses associated with it. The causes of corrosion associated with the presence of sulfur compounds, hydrochloric acid and chlorides, naphthenic acids, etc. in oil are described. A set of methods aimed at reducing the corrosion effect of these components is given. The use of inhibitors is one of the most effective and widespread such methods. The use of corrosion inhibitors from renewable raw materials is becoming more and more popular. The article provides an overview of literary sources related to the study of "green" corrosion inhibitors.

1. Impact.NACE.Org, (Accessed 13 Mar 2020) Retrieved from http://impact.nace.org/economic-impact.aspx
2. Brongers, M.P.H., Koch,G.H., Payer., J.H., Thompson, N.G., & Virmani, Y.P., (2002). Corrosion costs and preventive strategies in the United States Summary. NACE, 1-12.
3. Akande, O. S., Fayomi,I., & Odigie, S. (2019) Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview.Journal of Physics: Conference Series, 1378, 022037, IOP https://doi:10.1088/1742-6596/1378/2/022037
https://doi.org/10.1088/1742-6596/1378/2/022037
4. Groysman. A. (2017). Corrosion problems and solutions in oil, gas, refining and petrochemical industry. Koroze a Ochrana Materialu, 61, pp. 100-117, https://doi: 10.1515/kom-2017-0013
https://doi.org/10.1515/kom-2017-0013
5. Aisha H. Al-Moubaraki & Ime Bassey Obot (2021). Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook. Journal of Saudi Chemical Society, 25 (12), 101370 https://doi.org/10.1016/j.jscs.2021.101370
https://doi.org/10.1016/j.jscs.2021.101370
6. Ana L., Vetere A., & Lorezo Van W. (2013). Corrosion‐Related Accidents in Petroleum Refineries. Lessons learned from accidents in EU and OECD countries. Luxembourg: Publications Office of the European Union, 100 pp. doi: 10.2788/37909
7. Sarpong, K.O., & Wills K.A., (2019). Survey on crude unit overhead corrosion control practices. In: Corrosion, Paper №13109. NACE International.
8. Chambers, B., Srinivasan, S., Kwei Meng Yap, & Yunovich, M. (2011). Corrosion in Crude Distillation Unit Overhead Operations: A Comprehensive Review. NACE, Paper No.11360.
9. Elnour, M. M., Ahmed I., M., & Ibrahim, M. T. (2014). Study the Effects of Naphthenic Acid in Crude Oil Equipment Corrosion. Journal of Applied and Industrial Sciences, 2 (6), 255-260
10. Adilbekova, A., Kujawski, W., Mirzaeian M., & Faizullayev, S., (2022). Recent demulsification methods of crude oil emulsions. Brief review, Journal of Petroleum Science and Engineering, 215, (B), 110643, https://doi.org/10.1016/j.petrol.2022.110643
https://doi.org/10.1016/j.petrol.2022.110643
11. Abdulredha, M. M., Aslina, H. S., & Luqman, C. A. (2020). Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arabian Journal of Chemistry, Volume 13, Issue 1, Pages 3403-3428, https://doi.org/10.1016/j.arabjc.2018.11.014
https://doi.org/10.1016/j.arabjc.2018.11.014
12. Abed, S. M., Abdurahman, N. H., Abdulbari, H.A., Akbari, S., & Yunus, R. M. (2019). Oil emulsions and the different recent demulsification techniques in the petroleum industry - A review. IOP Conference Series: Materials Science and Engineering, 702, 012060. https://doi.org/10.1088/1757-899X/702/1/012060
https://doi.org/10.1088/1757-899X/702/1/012060
13. Abubakar Abubakar Umar, Aliyu Adebayo Sulaimon, Ismail Bin Mohd Saaid, & Rashidah Bint Mohd Pilus (2018). A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. Journal of Petroleum Science and Engineering, 165, 673-690, https://doi.org/10.1016/j.petrol.2018.03.014
https://doi.org/10.1016/j.petrol.2018.03.014
14. Abdurahman, N.H., Awad, O.I., Kamil, M., Saad, M.A., & Yunus, R.M., (2019). An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes. 7:470. doi: 10.3390/pr7070470
https://doi.org/10.3390/pr7070470
15. Boichenko S., Golych, Y., Romanchuk, V., & Topilnytskyy P. (2014). Physico-chemical properties and efficiency of demulsifiers based on block copolymers of ethylene and propylene oxides. Chemistry and Chemical Technology, 8(2), 211-218. doi: 10.23939/chcht08.02.211
https://doi.org/10.23939/chcht08.02.211
16. Eric Vetters. (2021). Neutralising amine selection for crude units. Digital refining. Processing, operations & maintenance. Retrieved from https://www.digitalrefining.com/article/1002636/neutralising-amine-selec...
17. Brzeszcz,J., & Turkiewicz, A. (2015). Corrosion inhibitors-application in oil industry. Nafta-Gaz, 2, 67-75. Retrieved from http://archiwum.inig.pl/INST/nafta-gaz/nafta-gaz/Nafta-Gaz-2015-02-01.pdf
18. Husin, H. & Tamalmani, K. (2020).Review on corrosion inhibitors for oil and gas corrosion issues. Appl. Sci. 10(10), 3389, 1-16. https://doi.org/10.3390/app10103389
https://doi.org/10.3390/app10103389
19. Yahya T. Al-Janabi. (2020). Corrosion Inhibitors for Refinery Operations. Corrosion Inhibitors in the Oil and Gas Industry, 1-39. https://doi.org/10.1002/9783527822140.ch9
https://doi.org/10.1002/9783527822140.ch9
20. Solomon, M.M., & Umoren, S.A., (2014). Recent developments on the use of polymers as corrosion inhibitors-a review. Open Mater. Sci. J., 8 (1), 39-54. https://doi.10.2174/1874088X01408010039
https://doi.org/10.2174/1874088X01408010039
21. Advincula, R.C., & Tiu, B.D.B., (2015). Polymeric corrosion inhibitors for the oil and gas industry: design principles and mechanism. React. Funct. Polym., 95, 25-45, https://doi.10.1016/j.reactfunctpolym.2015.08.006
https://doi.org/10.1016/j.reactfunctpolym.2015.08.006
22. Alfantazi, A., Chandrabhan, V., Kyong Yop Rhee, & Quraishi, M.A., (2021) Corrosion inhibition potential of chitosan based Schiff bases: Design, performance and applications. International Journal of Biological Macromolecules, (184), 135-143. https://doi.org/10.1016/j.ijbiomac.2021.06.049
https://doi.org/10.1016/j.ijbiomac.2021.06.049
23. Romanchuk, V., Topilnytskyy, P., & Yarmola, T. (2018). Production of corrosion inhibitors for oil refining equipment using natural components. Chemistry and Chemical Technology, 12(3), 400-404 https://doi.org/10.23939/chcht12.03.400
https://doi.org/10.23939/chcht12.03.400
24. Asogwa, F.C., Agobi, A.U., Abiola, B.A., Abeng, F.E., Abang A.I.,, N.A.Ikeuba, Adalikwu, S.A., Ntibi, J.E., Okafor, P.C., Ita, B.I., Omang, B.J., Eno, E.A., & Loius, H., (2023). Kinetic and thermodynamic evaluation of azithromycinas a green corrosion inhibitor during acid cleaning process of mild steel using an experimental and theoretical approach. Resultsin Chemistr, 5. doi:10.1016/j.rechem.2023.100909.
https://doi.org/10.1016/j.rechem.2023.100909
25. Khan Ch. K., Romanchuk V.V., & Topilnytskyy P.I., (2017). Doslidgennya antykoroziynych vlastyvostey potenciynych inhibitoriv korozii, pryznachenych dlya naftopererobnoi promysvosti. Visnyk NTU "HPI", №44(1266), 104-110.
26. A.M. Abdel-Gaber, Essam Khamis Al-Hanash, Hisham A Abo-eldahab Shaimaa Adee (2008). Inhibition of Aluminium Corrosion in Alkaline Solutions Using Natural Compound. The Arabian Journal for Science and Engineering, 34 (2C), 61-69. DOI:10.1016/j.matchemphys.2007.11.038.
https://doi.org/10.1016/j.matchemphys.2007.11.038
27. Doroshenko T.Ph., Gorban O.O., & Skrypnyk Yu.G.(2021). Perspectyvnist stvorennya efectyvnych inhibitoriv korozii na osnovi rosnynnoi syrovyny. Phizyko-organichna chimiya, pharmacologia, ta pharmacevtychna technologia biologichno aknytvnych rechovyn: zbirnyk naukovych prac . 3, 45-57.
28. Chidiebere M. A., Ogukwe C. E., Oguzie K. L., Eneh C. N., & Oguzie E. E. (2012).Corrosion Inhibition and Adsorption Behavior of Punica granatum Extract on Mild Steel in Acidic Environments: Experimental and Theoretical Studies. Ind. Eng. Chem. Res., 51(2), 668-677. https://doi.org/10.1021/ie201941f
https://doi.org/10.1021/ie201941f
29. Arinkoola A. O., Agbede O. O., Ogunleye O. O., Eletta O. A., Osho Y. A., Morakinyo A. F., Hamed J. O. (2020). Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon, 6(1), e03205. DOI:10.1016/j.heliyon.2020.e03205
https://doi.org/10.1016/j.heliyon.2020.e03205
30. Ayeni F.A., et al.(2014). Investigation of Sida acuta (Wire Weed) Plant Extract as Corrosion Inhibitor for Aluminium-Copper-Magnessium Alloy in Acidic Medium. J. Min. Mater. Charact. Eng., 2(4), 286-291. https://doi.org/ 10.4236/jmmce.2014.24033.
https://doi.org/10.4236/jmmce.2014.24033
31. Ebenso E. E. (2003). Corrosion Inhibition Studies of Some Plant Extracts on Aluminium in Acidic Medium. Mater. Chem. Phys., 79, 58-62. https://doi.org/ 10.1016/S0254- 0584(02)00446-7.
https://doi.org/10.1016/S0254-0584(02)00446-7
32. Ambrish Singh, Ishtiaque Ahamad, Mumtaz A. (2016). Quraishi Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, 9, Supplement 2, S1584-S1589. https://doi.org/10.1016/j.arabjc.2012.04.029
https://doi.org/10.1016/j.arabjc.2012.04.029
33. Haldhar,R., Prasad, D., Saxena, A., Singh, P., (2018) Valeriana wallichii root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: experimental and theoretical study. Mater. Chem. Front., 2, 1225-1237 DOI: 10.1039/C8QM00120K
https://doi.org/10.1039/C8QM00120K
34. Anozie, R.C., Chukwudubem, I.E., Ekerenam, O.O. and Emori, W., Ikeuba, A.I., Sonde, C.U., Ugi, B.U., & Onyeachu, B., (2023). Electrochemical evaluation of the anti-corrosion potential of selected amino acids on magnesium in aqueous sodium chloride solutions, Anti-Corrosion Methods and Materials, 70 (5), 252-258. https://doi.org/10.1108/ACMM-04-2023-2796
https://doi.org/10.1108/ACMM-04-2023-2796
35. Gupta,N. K., Joshi, P.G., Srivastava,V.,& Quraishi, M.A. (2018). Chitosan: A macromolecule as green corrosion inhibitor for mild steel in sulfamic acid useful for sugar industry. International Journal of Biological Macromolecules, 106, 704-711 https://doi.org/10.1016/j.ijbiomac.2017.08.064
https://doi.org/10.1016/j.ijbiomac.2017.08.064
36. Guanben Du, Xianghong Li, Shuduan Deng, Tong Lin, & Xiaoguang Xie,(2020). Cassava starch ternary graft copolymer as a corrosion inhibitor for steel in HCl solution. Journal of Materials Research and Technology, 9, Issue 2, 2196-2207 https://doi.org/10.1016/j.jmrt.2019.12.050
https://doi.org/10.1016/j.jmrt.2019.12.050
37. M. Mobin, M. A. Khan, M. (2011). Parveen Inhibition of mild steel corrosion in acidic medium using starch and surfactants additive. Journal of Applied Polimer Science. 121(3), 1558-1565 https://doi.org/10.1002/app.33714
https://doi.org/10.1002/app.33714
38. C. Wu, F. Chen, X. Wang, H.-J. Kim, G.-q. He, V. Haley-Zitlin, G.(2006). Huang Antioxidant constituents in feverfew (Tanacetum parthenium) extract and their chromatographic quantification. Food Chem., 96 (2), 220-227. DOI:10.1016/j.foodchem.2005.02.024
https://doi.org/10.1016/j.foodchem.2005.02.024
39. Mallahi, T., Saharkhiz, M.J., Javanmardi, J. (2018). Salicylic acid changes morpho-physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecol. Sin., 38 (5), 351-355. https://doi.org/10.1016/j.chnaes.2018.02.003
https://doi.org/10.1016/j.chnaes.2018.02.003
40. Bokai Liao, Zongyi Zhou, Xuehong Min, Shan Wan, Jinhang Liu, & Xingpeng Guo (2023) A novel green corrosion inhibitor extracted from waste feverfew root for carbon steel in H2SO4 solution. Results in Engineering, 17, 100971/ https://doi.org/10.1016/j.rineng.2023.100971
https://doi.org/10.1016/j.rineng.2023.100971
41. Choon Chieh Ong, Khairiah Abd Karim (2017).Inhibitory Effect of Red Onion Skin Extract on the Corrosion of Mild Steel in Acidic Medium. Chemical Engineering Transactions, 56,913-918. DOI:10.3303/CET1756153
42. Agus Paul Setiawan Kaban, Wahyu Mayangsari, Mochammad Syaiful Anwar, Ahmad Maksum, Rini Riastuti, Taufik Aditiyawarman, & Johny Wahyuadi Soedarsono (2022). Experimental and modelling waste rice husk ash as a novel green corrosion inhibitor under acidic environment. Materials Today: Proceedings, 62(6), 4225-4234 https://doi.org/10.1016/j.matpr.2022.04.738
https://doi.org/10.1016/j.matpr.2022.04.738
43. Alghamdi, M. (2023). Green nanomaterials and nanocomposites for corrosion inhibition applications. Corrosion Reviews, 41(3) DOI: 10.1515/corrrev-2022-0075
https://doi.org/10.1515/corrrev-2022-0075
44. Eno E. Ebenso, Chandrabhan, V., Quraishi, M.A. (2017). Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview. Journal of Molecular Liquids, 233, 403-414 / https://doi.org/10.1016/j.molliq.2017.02.111
https://doi.org/10.1016/j.molliq.2017.02.111