Classical aspect of spin angular momentum in geometric quantum mechanics

Geometric Quantum Mechanics is a formulation demonstrating how quantum theory may be cast in the language of Hamiltonian phase-space dynamics.  Within this framework, the classical properties of spin $\frac{1}{2}$, spin 1 and spin $\frac{3}{2}$ particles have been studied.  The correspondence between the Poisson bracket and commutator algebras for these systems was shown by explicitly computing the value of the commutator of spin operators and comparing it with the Poisson bracket of the corresponding classical observables.  This study was extended by comparing the Casimir operator and its classical counterpart.  The results showed that there exists a correspondence between classical and quantum Casimir operators at least for the case of spin $\frac{1}{2}$.  This research clearly shows the limit of classical notions to describe the purely quantum concept.

  1. Heslot A.  Quantum mechanics as a classical theory.  Physical Review D.  31 (6), 1341–1348 (1985).
  2. Varadarajan V. S.  Geometry of Quantum Theory. Vol. 1.  Princeton, N.J., van Nostrand (1968).
  3. Ashtekar A., Schilling T. A.  Geometry of quantum mechanics.  AIP Conference Proceedings.  342 (1), 471–478 (1995).
  4. Kibble T. W. B.  Geometrization of quantum mechanics.  Communications in Mathematical Physics.  65, 189–201 (1979).
  5. Cirelli R., Lanzavecchia P.  Hamiltonian vector fields in quantum mechanics.  II Nuovo Cimento B.  79, 271–283 (1984).
  6. Anandan J.  A geometric approach to quantum mechanics.  Foundations of Physics.  21, 1265–1284 (1991).
  7. Brody D. C., Hughston L. P.  Geometric quantum mechanics.  Journal of Geometry and Physics.  38 (1), 19–53 (2001).
  8. Chruściński D., Jamiolkowski A.  Geometric Phases in Classical and Quantum Mechanics.  Progress in Mathematical Physics. Vol. 36. Boston, Birkhäser (2004).
  9. Benvegnù A., Sansonetto N., Spera M.  Remarks on geometric quantum mechanics.  Journal of Geometry and Physics.  51 (2), 229–243 (2004).
  10. Chruściński D.  Geometric Aspects of Quantum Mechanics and Quantum Entanglement.  Journal of Physics: Conference Series.  30, 9–16 (2006).
  11. Marmo G., Volkert G.  Geometrical description of quantum mechanics – transformations and dynamics.  Physica Scripta.  82, 038117 (2010).
  12. Clemente-Gallardo J.  The geometrical formulation of quantum mechanics.  Revista Real Academia de Ciencias de Zaragoza.  67, 51–103 (2012).
  13. Heydari H.  Geometric formulation of quantum mechanics.  Preprint ArXiv:1503.00238v2 (2016).
  14. Anandan J., Aharonov Y.  Geometry of quantum evolution.  Physical Review Letters.  65 (14), 1697–1700 (1990).
  15. Heydari H.  A geometric framework for mixed quantum states based on a Kähler structure.  Journal of Physics A: Mathematical and Theoretical.  48, 255301 (2015).
  16. Gleason A. M.  Measures on the Closed Subspaces of a Hilbert Space.  Journal of Mathematics and Mechanics.  6 (6), 885–893 (1957).
  17. Griffiths D. J.  Introduction to Quantum Mechanics.  Prentice Hall. 147–149 (1995).