Accelerated residual new iterative method for solving the generalized Burgers–Huxley equation

Recently, Batiha B. et al. in Symmetry 15 (3), 688 (2023), propose the New Iterative Method (NIM) for solving the generalized Burgers–Huxley equation.  In order to give an extended version of this work, we rewrite NIM method in an elegant form in the first step, and introduce a controlled parameter in the second step, called the Accelerated Residual New Iterative Method (ARNIM).  We apply the established framework to solve the generalized Burgers–Huxley equation and then we give a convergence study according to the values of the control parameter.

  1. Ala'yed O., Batiha B., Alghazo D., Ghanim F.  Cubic B-Spline method for the solution of the quadratic Riccati differential equation.  AIMS Mathematics.  8 (4), 9576–9584 (2023).
  2. Wang X. Y., Zhu Z. S., Lu Y. K.  Solitary wave solutions of the generalised Burgers–Huxley equation.  Journal of Physics A: Mathematical and General.  23, 271–274 (1990).
  3. Qin S. J., Yu J.  Recent developments in multivariable controller performance monitoring.  Journal of Process Control.  17 (3), 221–227 (2007).
  4. Radid A., Rhofir K.  SOR-Like New Iterative Method for Solving the Epidemic Model and the Prey and Predator Problem.  Discrete Dynamics in Nature and Society.  2020 (1), 9053754 (2020).
  5. Stanimirović P. S., Soleymani F., Haghani F. K.  Computing outer inverses by scaled matrix iterations.  Journal of Computational and Applied Mathematics.  296, 89–101 (2016).
  6. Izadi F., Saberi Najafi H., Refahi Sheikhani A. H.  Numerical solutions of nonlinear Burgers-Huxley equation through the Richtmyer type nonstandard finite difference method.  International Journal of Nonlinear Analysis and Applications.  13 (1), 1507–1518 (2022).
  7. Inan B.  Finite difference methods for the generalized Huxley and Burgers–Huxley equations.  Kuwait Journal of Science.  44 (3), 20–27 (2017).
  8. Adomian G.  Solving Frontier Problems of Physics: The Decomposition Method.  Kluwer Academic; Boston, MA, USA (1994).
  9. Hashim I., Noorani M. D. M., Al-Hadidi M. R. S.  Solving the generalized Burgers–Huxley equation using the Adomian decomposition method.  Mathematical and Computer Modelling.  43 (11–12), 1404–1411 (2006).
  10. Batiha B., Noorani M., Hashim I.  Application of variational iteration method to the generalized Burgers–Huxley equation.  Chaos, Solitons & Fractals.  36 (3), 660–663 (2008).
  11. Daftardar-Gejji V., Jafari H.  An iterative method for solving non linear functional equations.  Journal of Mathematical Analysis and Applications.  316 (2), 753–763 (2006).
  12. Daftardar-Gejji V., Bhalekar S.  Solving fractional diffusion-wave equations using a new iterative method.  Fractional Calculus & Applied Analysis.  11 (2), 193–202 (2008).
  13. Batiha B., Ghanim F., Batiha K.  Application of the New Iterative Method (NIM) to the Generalized Burgers–Huxley Equation.  Symmetry.  15 (3), 688 (2023).