SOLAR CHIMNEY: AN INNOVATIVE APPROACH TO PASSIVE VENTILATION

The article explores the effective implementation of energy-efficient technologies in passive ventilation systems for residential buildings. As energy efficiency and environmental sustainability become more critical in construction, ensuring natural air exchange is essential for a comfortable indoor microclimate. The study analyzes contemporary ventilation systems, evaluates climatic factors, and applies numerical modeling to assess passive ventilation effectiveness. Findings show that solar chimneys, wind catchers, and hybrid ventilation systems improve natural air exchange and reduce reliance on mechanical systems. Despite advances in renewable energy technologies, solar chimneys are underutilized, particularly in multi-story buildings, due to limited research and the lack of validated methodologies. The article also offers recommendations for integrating passive ventilation technologies into modern construction for more sustainable and energy-efficient designs.

Ali, M. H., Mawlood, M. K., & Jalal, R. E. (2024). Minimizing energy losses and enhancing performance of Trombe wall systems through partial evacuation of the air gap. Energy and Buildings, 307, 113959. https://doi.org/10.1016/j.enbuild.2024.113959
https://doi.org/10.1016/j.enbuild.2024.113959
Arce, J., Jiménez, M. J., Guzmán, J. D., Heras, M. R., Alvarez, G., & Xamán, J. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34(12), 2928-2934. https://doi.org/10.1016/j.renene.2009.04.026
https://doi.org/10.1016/j.renene.2009.04.026
Ardila, O., Quiroga, J., & Amaris, C. (2023). Assessment of solar chimney potential for passive ventilation and thermal comfort in the northeast of Colombia. Results in Engineering, 20, 101641. https://doi.org/10.1016/j.rineng.2023.101641
https://doi.org/10.1016/j.rineng.2023.101641
Bansal, N. K., Mathur, R., & Bhandari, M. S. (1994). A study of solar chimney assisted wind tower system for natural ventilation in buildings. Building and Environment, 29(4), 495-500. https://doi.org/10.1016/0360-1323(94)90008-6
https://doi.org/10.1016/0360-1323(94)90008-6
Benlefki, A., Hamel, M., & Medjahed, B. (2021). Numerical Investigation of the Interaction between the Thermal and Dynamic Effects of Cross-Ventilation for a Generic Isolated Building. Defect and Diffusion Forum, 408, 141-153. https://doi.org/10.4028/www.scientific.net/DDF.408.141
https://doi.org/10.4028/www.scientific.net/DDF.408.141
Broderick, Á., Byrne, M., Armstrong, S., Sheahan, J., & Coggins, A. M. (2017). A pre and post evaluation of indoor air quality, ventilation, and thermal comfort in retrofitted co-operative social housing. Building and Environment, 122, 126-133. https://doi.org/10.1016/j.buildenv.2017.05.020
https://doi.org/10.1016/j.buildenv.2017.05.020
Cakyova, K., Figueiredo, A., Oliveira, R., Rebelo, F., Vicente, R., & Fokaides, P. (2021). Simulation of passive ventilation strategies towards indoor CO2 concentration reduction for passive houses. Journal of Building Engineering, 43, 103108. https://doi.org/10.1016/j.jobe.2021.103108
https://doi.org/10.1016/j.jobe.2021.103108
Chen, Y., Tong, Z., & Malkawi, A. (2017). Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386-396. https://doi.org/10.1016/j.buildenv.2017.06.026
https://doi.org/10.1016/j.buildenv.2017.06.026
Chenari, B., Dias Carrilho, J., & Gameiro Da Silva, M. (2016). Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 59, 1426-1447. https://doi.org/10.1016/j.rser.2016.01.074
https://doi.org/10.1016/j.rser.2016.01.074
Chew, L. W., Chen, C., & Gorlé, C. (2022). Improving thermal model predictions for naturally ventilated buildings using large eddy simulations. Building and Environment, 220, 109241. https://doi.org/10.1016/j.buildenv.2022.109241
https://doi.org/10.1016/j.buildenv.2022.109241
Coggins, A. M., Wemken, N., Mishra, A. K., Sharkey, M., Horgan, L., Cowie, H., Bourdin, E., & McIntyre, B. (2022). Indoor air quality, thermal comfort and ventilation in deep energy retrofitted Irish dwellings. Building and Environment, 219, 109236. https://doi.org/10.1016/j.buildenv.2022.109236
https://doi.org/10.1016/j.buildenv.2022.109236
Etheridge, D. (2015). A perspective on fifty years of natural ventilation research. Building and Environment, 91, 51-60. https://doi.org/10.1016/j.buildenv.2015.02.033
https://doi.org/10.1016/j.buildenv.2015.02.033
Hassan, A. M. (2023). Solar Chimney Performance Driven Air Ventilation Promotion: An Investigation of Various Configuration Parameters. Buildings, 13(11), 2796. https://doi.org/10.3390/buildings13112796
https://doi.org/10.3390/buildings13112796
Haverinen-Shaughnessy, U., Pekkonen, M., Leivo, V., Prasauskas, T., Turunen, M., Kiviste, M., Aaltonen, A., & Martuzevicius, D. (2018). Occupant satisfaction with indoor environmental quality and health after energy retrofits of multi-family buildings: Results from INSULAtE-project. International Journal of Hygiene and Environmental Health, 221(6), 921-928. https://doi.org/10.1016/j.ijheh.2018.05.009
https://doi.org/10.1016/j.ijheh.2018.05.009
Jia, L.-R., Han, J., Chen, X., Li, Q.-Y., Lee, C.-C., & Fung, Y.-H. (2021). Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 11(12), 591. https://doi.org/10.3390/buildings11120591
https://doi.org/10.3390/buildings11120591
Kalidasan, K., Velkennedy, R., & Rajesh Kanna, P. (2014). Buoyancy enhanced natural convection inside the ventilated square enclosure with a partition and an overhanging transverse baffle. International Communications in Heat and Mass Transfer, 56, 121-132. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.007
https://doi.org/10.1016/j.icheatmasstransfer.2014.06.007
Khanal, R., & Lei, C. (2011). Solar chimney-A passive strategy for natural ventilation. Energy and Buildings, 43(8), 1811-1819. https://doi.org/10.1016/j.enbuild.2011.03.035
https://doi.org/10.1016/j.enbuild.2011.03.035
Letan, R., Dubovsky, V., & Ziskind, G. (2003). Passive ventilation and heating by natural convection in a multi-storey building. Building and Environment, 38(2), 197-208. https://doi.org/10.1016/S0360-1323(02)00070-7
https://doi.org/10.1016/S0360-1323(02)00070-7
Liu, H., Xu, X., Tam, V. W. Y., & Mao, P. (2023). What is the "DNA" of healthy buildings? A critical review and future directions. Renewable and Sustainable Energy Reviews, 183, 113460. https://doi.org/10.1016/j.rser.2023.113460
https://doi.org/10.1016/j.rser.2023.113460
López Plazas, F., & Sáenz De Tejada, C. (2024). Natural ventilation to improve indoor air quality (IAQ) in existing homes: The development of health-based and context-specific user guidelines. Energy and Buildings, 314, 114248. https://doi.org/10.1016/j.enbuild.2024.114248
https://doi.org/10.1016/j.enbuild.2024.114248
Matsunaga, J., Kikuta, K., Hirakawa, H., Mizuno, K., Tajima, M., Hayashi, M., & Fukushima, A. (2021). An Assessment of Heating Load Reduction by a Solar Air Heater in a Residential Passive Ventilation System. Energies, 14(22), 7651. https://doi.org/10.3390/en14227651
https://doi.org/10.3390/en14227651
Monghasemi, N., & Vadiee, A. (2018). A review of solar chimney integrated systems for space heating and cooling application. Renewable and Sustainable Energy Reviews, 81, 2714-2730. https://doi.org/10.1016/j.rser.2017.06.078
https://doi.org/10.1016/j.rser.2017.06.078
Myroniuk, K., Furdas, Y., Zhelykh, V., Adamski, M., Gumen, O., Savin, V., & Mitoulis, S.-A. (2024). Passive Ventilation of Residential Buildings Using the Trombe Wall. Buildings, 14(10), 3154. https://doi.org/10.3390/buildings14103154
https://doi.org/10.3390/buildings14103154
Punyasompun, S., Hirunlabh, J., Khedari, J., & Zeghmati, B. (2009). Investigation on the application of solar chimney for multi-storey buildings. Renewable Energy, 34(12), 2545-2561. https://doi.org/10.1016/j.renene.2009.03.032
https://doi.org/10.1016/j.renene.2009.03.032
Rabani, M., Kalantar, V., & Rabani, M. (2019). Passive cooling performance of a test room equipped with normal and new designed Trombe walls: A numerical approach. Sustainable Energy Technologies and Assessments, 33, 69-82. https://doi.org/10.1016/j.seta.2019.03.005
https://doi.org/10.1016/j.seta.2019.03.005
Rodrigues, A. M., Canha Da Piedade, A., Lahellec, A., & Grandpeix, J. Y. (2000). Modelling natural convection in a heated vertical channel for room ventilation. Building and Environment, 35(5), 455-469. https://doi.org/10.1016/S0360-1323(99)00027-X
https://doi.org/10.1016/S0360-1323(99)00027-X
Rojas, G., Fletcher, M., Johnston, D., & Siddall, M. (2024). A review of the indoor air quality in residential Passive House dwellings. Energy and Buildings, 306, 113883. https://doi.org/10.1016/j.enbuild.2023.113883
https://doi.org/10.1016/j.enbuild.2023.113883
Shi, L., Zhang, G., Cheng, X., Guo, Y., Wang, J., & Chew, M. Y. L. (2016). Developing an empirical model for roof solar chimney based on experimental data from various test rigs. Building and Environment, 110, 115-128. https://doi.org/10.1016/j.buildenv.2016.10.002
https://doi.org/10.1016/j.buildenv.2016.10.002
Simões, N., Manaia, M., & Simões, I. (2021). Energy performance of solar and Trombe walls in Mediterranean climates. Energy, 234, 121197. https://doi.org/10.1016/j.energy.2021.121197
https://doi.org/10.1016/j.energy.2021.121197
Sornek, K., Papis-Frączek, K., Calise, F., Cappiello, F. L., & Vicidomini, M. (2023). A Review of Experimental and Numerical Analyses of Solar Thermal Walls. Energies, 16(7), 3102. https://doi.org/10.3390/en16073102
https://doi.org/10.3390/en16073102
Sukholova, I., Voznyak, O., Myroniuk, K., Zhelykh, V., Mitoulis, S.-A., & Kasynets, M. (2024). Increasing the Efficiency of the Residential Buildings Premises Natural Ventilation. In Z. Blikharskyy & V. Zhelykh (Eds.), Proceedings of EcoComfort 2024 (Vol. 604, pp. 496-505). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-67576-8_45
https://doi.org/10.1007/978-3-031-67576-8_45
Tognon, G., Marigo, M., De Carli, M., & Zarrella, A. (2023). Mechanical, natural and hybrid ventilation systems in different building types: Energy and indoor air quality analysis. Journal of Building Engineering, 76, 107060. https://doi.org/10.1016/j.jobe.2023.107060
https://doi.org/10.1016/j.jobe.2023.107060
Venhryn, I., & Shapoval, S. (2019). The intensity of solar radiation in the city of Lviv. Energy-Efficiency in Civil Engineering and Architecture, 0(12), 77-84. https://doi.org/10.32347/2310-0516.2019.12.77-84
https://doi.org/10.32347/2310-0516.2019.12.77-84
Voznyak, O., Myroniuk, K., Sukholova, I., & Kapalo, P. (2020). The Impact of Air Flows on the Environment. In Z. Blikharskyy, P. Koszelnik, & P. Mesaros (Eds.), Proceedings of CEE 2019 (Vol. 47, pp. 534-540). Springer International Publishing. https://doi.org/10.1007/978-3-030-27011-7_68
https://doi.org/10.1007/978-3-030-27011-7_68
Walker, C., Tan, G., & Glicksman, L. (2011). Reduced-scale building model and numerical investigations to buoyancy-driven natural ventilation. Energy and Buildings, 43(9), 2404-2413. https://doi.org/10.1016/j.enbuild.2011.05.022
https://doi.org/10.1016/j.enbuild.2011.05.022
Wang, B., Zhao, H., Han, B., & Jiang, X. (2023). An Investigation of Outdoor Thermal Comfort Assessment for Elderly Individuals in a Field Study in Northeastern China. Buildings, 13(10), 2458. https://doi.org/10.3390/buildings13102458
https://doi.org/10.3390/buildings13102458
Wang, Y., Kuckelkorn, J., Zhao, F.-Y., Spliethoff, H., & Lang, W. (2017). A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings. Renewable and Sustainable Energy Reviews, 72, 1303-1319. https://doi.org/10.1016/j.rser.2016.10.039
https://doi.org/10.1016/j.rser.2016.10.039
Yang, D., Du, T., Peng, S., & Li, B. (2013). A model for analysis of convection induced by stack effect in a shaft with warm airflow expelled from adjacent space. Energy and Buildings, 62, 107-115. https://doi.org/10.1016/j.enbuild.2013.02.045
https://doi.org/10.1016/j.enbuild.2013.02.045
Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications - A review. Applied Energy, 115, 164-173. https://doi.org/10.1016/j.apenergy.2013.10.062
https://doi.org/10.1016/j.apenergy.2013.10.062
Zamora, B., & Kaiser, A. S. (2010). Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation. Renewable Energy, 35(9), 2080-2088. https://doi.org/10.1016/j.renene.2010.02.009
https://doi.org/10.1016/j.renene.2010.02.009
Zaniboni, L., & Albatici, R. (2022). Natural and Mechanical Ventilation Concepts for Indoor Comfort and Well-Being with a Sustainable Design Perspective: A Systematic Review. Buildings, 12(11), 1983. https://doi.org/10.3390/buildings12111983
https://doi.org/10.3390/buildings12111983
Zhang, H., Tao, Y., & Shi, L. (2021). Solar Chimney Applications in Buildings. Encyclopedia, 1(2), 409-422. https://doi.org/10.3390/encyclopedia1020034
https://doi.org/10.3390/encyclopedia1020034
Zhang, T., & Yang, H. (2019). Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades. Applied Energy, 242, 107-120. https://doi.org/10.1016/j.apenergy.2019.03.072
https://doi.org/10.1016/j.apenergy.2019.03.072
Ziskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34(1), 91-101. https://doi.org/10.1016/S0378-7788(01)00080-9
https://doi.org/10.1016/S0378-7788(01)00080-9