THEORETICAL FOUNDATIONS OF MODELING AND RESEARCH THE PROCESS OF CUTTING INTERNAL GEAR TEETH MESHING BY THE RADIAL-CIRCULAR METHOD

The article presents the results of studying the process of cutting cylindrical internal gears by the radial-circular method. The importance and relevance of the task of improving the technology of manufacturing gears and methods of modelling and optimization are substantiated.  The advantages, possibilities and scope of the radial-circular method for the production of gears and transmissions are shown. To provide a basis for a comprehensive analysis of the process, a graphical-analytical method has been developed to determine the parameters of chips cut by the teeth of a disk cutter when cutting planetary gears. The regularities of changes in the cut area and chip thickness depending on the gear modulus were investigated. The results made it possible to identify the process features that will affect the cutting force, machining accuracy and tool wear.

[1] Karpuschewski B., Knoche H.-J., Hipke M. "Gear finishing by abrasive processes". CIRP Ann. Manuf. Technol., 57, pp. 621-640, 2008.
https://doi.org/10.1016/j.cirp.2008.09.002
[2] Industrial study 3320 "World Gears", Freedonia: Cleveland, OH, USA, 2015.
[3] Global Gear Technology Market by Technology by Geographic Scope and Forecast; Verified Market Research: Lewes, DE, USA, 2021.
[4] Tapoglou N. "Development of cutting force model and process maps for power skiving using CAD-based modelling". Machines, 9(5), p. 95, 2021.
https://doi.org/10.3390/machines9050095
[5] "Advances in Gear Theory and Gear Cutting Tool Design", Springer, 2022, pp. 233-254. DOI:10.1007/978-3-030-92262-7
https://doi.org/10.1007/978-3-030-92262-7
[6] Hrytsay I., Stupnytskyy V. "Analysis of the Involute and Sinusoidal Gears by the Operating Parameters and a New Method of its Cutting". In: Advances in Design, Simulation and Manufacturing. DSMIE-2019. Lecture Notes in Mechanical Engineering, pp. 104-113, 2019. DOI:10.1007/978-3-030-22365-6-11
https://doi.org/10.1007/978-3-030-22365-6_11
[7] Hrytsay I., Blahut Ye. "Gearing and manufacturing technologies: new in the traditional". Equipment and tools, 2 (61), pp. 36-40, 2004.
[8] Hrytsay I. "Sinusoidal gear transmissions and the latest technology of their manufacture", Mechanical engineering and technosphere of the XX1 century. Collection of works of the X11 international scientific and technical conference. Sevastopol, pp. 230-234, 2005.
[9] Hrytsay, I., Hromnyuk, S. "Increasing efficiency of the process of cutting gear-wheels on the basis of radial-rotation method in the rolling-off". Tool Reliab. Optim. Technol. Syst. 32, pp. 226-229, 2013.
[10] Wei Chen, Yuzhou Tian, Qiang Sun and Pengfei Zhu. "A Novel Model of an S-Shaped Tooth Profile Gear Pair with a Few Pinion Teeth and Tooth Contact Analysis Considering Shaft Misalignments". School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China. Appl. Sci. 2023, 13(15), 8959. DOI:10.3390/app13158959
https://doi.org/10.3390/app13158959
[11] Sun, Y.H.; Sun, Q. "A Kind of Special Type Profile Gear". CN104455315A, 25 March 2015.
[12] Yahaya, S.H.; Salleh, M.S.; Ali, J.M. "Spur Gear Design With an S-shaped Transition Curve Application Using MATHEMATICA and CAD Tools". In Proceedings of the 2009 Second International Conference on Machine Vision, Dubai, United Arab Emirates, pp. 273-276, 2009.
https://doi.org/10.1109/ICMV.2009.19
[13] Damijan, Z.; Simon, K.; Joze, T.; Joze, D. "Different teeth profile shapes of polymer gears and comparison of their performance". J. Adv. Mech. Des. Syst. Manuf. 2017, 11, JAMDSM0083.
https://doi.org/10.1299/jamdsm.2017jamdsm0083
[14] Hlebanja, G. "Gradual development of S-shaped gears". MATEC Web Conf. 2022, 366, 01001. Wu, X.T. Gear Geometry and Applied Theory, 2nd ed.; China Machine Press: Beijing, China, 2009.
https://doi.org/10.1051/matecconf/202236601001
[15] S. H. Yahaya, M. S. Salleh, J. M. Ali. "Spur Gear Design With An S-Shaped Transition Curve Application Using MATHEMATICA And CAD Tool". In: 2009 International Conference on Computer Technology and Development. рр 426-429, 2009. DOI:10.1109/ICCTD.2009.76
https://doi.org/10.1109/ICCTD.2009.76
[16] J. Hlebanja, G. Hlebanja, "Anwendbarkeit der S-Verzahnung im Getriebebau: Nichtevolventische Verzahnungen weiterentwickelt. Antriebstechnik", No. 2 (44, 2005), pp. 34-38.
[17] J. Hlebanja, G. Hlebanja, M. "Umberger, S-gear design rules". Ventil, No. 4, (2020) 26, pp. 254-263.
[18] G. Hlebanja, M. Erjavec, M. Hriberšek, L. Knez, S. Kulovec, "Theory and applications based on S-gear geometry"; in S.P. Radzevich (Ed.), Recent advances in gearing: scientific theory and applications, 1st ed. Springer Nature, pp. 51-87, 2022.
https://doi.org/10.1007/978-3-030-64638-7_2
[19] Shanming Luo, Yue Wu b , Jian Wang. "The generation principle and mathematical models of a novel cosine gear drive". In: Mechanism and Machine Theory. 43 (2008), pp. 1543-1556.
https://doi.org/10.1016/j.mechmachtheory.2007.12.007
[20] P. Tkach1 , P. Nosko, O. Bashta, Yu. Tsybrii, O. Revyakina, G. Boyko. "COMPARISON OF SINUSOIDAL AND INVOLUTE SPUR GEARS BY MESHING CHARACTERISTICS". In: Proceedings of Odessa Polytechnic University, Issue 1(57), 2019. Pp. 41-51. ISSN 2076-2429
https://doi.org/10.15276/opu.1.57.2019.06
[21] M. Inuia, Y. Huang, H. Onozuka, N. Umezu, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation", Procedia Manufacturing, Vol.48, pp.520-527, 2020. DOI:10.1016/j.promfg.2020.05.078
https://doi.org/10.1016/j.promfg.2020.05.078
[22] B. Vargas, M. Zapf, J. Klose, F. Zanger, V. Schulze, "Numerical modelling of cutting forces in gear skiving", Procedia CIRP. Vol. 82, pp. 455-460, 2019. DOI:10.1016/j.procir.2019.04.039
https://doi.org/10.1016/j.procir.2019.04.039
[23] T. Bergs, A.Georgoussis, C.Löpenhaus, "Development of a numerical simulation method for gear skiving", Procedia CIRP, Vol. 88, pp. 352-357, 2020. DOI:10.1016/j.procir.2020.05.061
https://doi.org/10.1016/j.procir.2020.05.061
[24] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail, "Chip geometry and cutting forces in gear power skiving", CIRP Annals, vol. 68, No1, pp. 109-112. 2019. DOI:10.1016/j.cirp.2019.04.085
https://doi.org/10.1016/j.cirp.2019.04.085
[25] T. Nishikawa, S. Shimada, G. Kobayashi, Z. Ren, N. Sugita, "Using Power Skiving to Increase the Efficiency and Precision of Internal Gear Cutting", Komatsu Tech. Rep., vol. 64, pp. 1-7, 2018.
[26] C. Janßen, J. Brimmers, v Bergs, "Validation of the plane-based penetration calculation for gear skiving", Procedia CIRP, vol. 99, pp. 220-225, 2021. DOI:10.1016/j.procir.2021.03.034
https://doi.org/10.1016/j.procir.2021.03.034
[27] M. Inui, Y. Huang, H. Onozuka, N. Umezu, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation", Procedia Manufacturing, vol. 48, pp. 520-527, 2020. DOI:10.1016/j.promfg.2020.05.078
https://doi.org/10.1016/j.promfg.2020.05.078
[28] C. Janßen, J. Brimmers, T. Bergs, "Validation of the plane-based penetration calculation for gear skiving", Procedia CIRP, vol. 99, pp. 220-225, 2021. DOI:10.1016/j.procir.2021.03.034
https://doi.org/10.1016/j.procir.2021.03.034
[29] H. Onozuka, F. Tayama, Y. Huang, M. Inui. "Cutting force model for power skiving of internal gear", Journal of Manufacturing Processes, vol. 56, pp. 1277-1285, 2020. DOI:10.1016/j.jmapro.2020.04.022
https://doi.org/10.1016/j.jmapro.2020.04.022
[30] N. Tapoglou, "Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation", The International Journal of Advanced Manufacturing Technology, vol. 100, №5-8, pp. 1779-1785, 2019. DOI:10.1007/s00170-018-2790-3
https://doi.org/10.1007/s00170-018-2790-3
[31] T. Bergs, A. Georgoussis, C. Löpenhaus, "Development of a numerical simulation method for gear skiving", Procedia CIRP, vol. 88, pp. 352-357. DOI:10.1016/j.procir.2020.05.061
https://doi.org/10.1016/j.procir.2020.05.061
[32] B. Vargas, M. Zapf, J. Klose, F. Zanger, V. Schulze, "Numerical modelling of cutting forces in gear skiving", Procedia CIRP. vol. 82, pp. 455-460, 2019. DOI:10.1016/j.procir.2019.04.039
https://doi.org/10.1016/j.procir.2019.04.039
[33] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail, "Chip geometry and cutting forces in gear power skiving", CIRP Annals, vol. 68, No. 1, pp. 109-112, 2019. DOI:10.1016/j.cirp.2019.04.085
https://doi.org/10.1016/j.cirp.2019.04.085
[34] A. Antoniadis, "Gear skiving - CAD simulation approach", Computer-Aided Design, vol. 44, No. 7, pp. 611-616, 2012. DOI:10.1016/j.cad.2012.02.003
https://doi.org/10.1016/j.cad.2012.02.003