The study of fluid flow and heat transfer over shrinking surfaces is crucial for applications in materials processing, thermal management, and nanotechnology. When combined with hybrid nanofluids, these systems offer enhanced heat transfer and boundary layer control, making them valuable for advanced energy systems and microfluidic technologies. This manuscript primarily investigates the behavior of MHD Reiner--Philippoff (RP) fluid, particularly emphasizing the role of AA7075–AA7072/methanol hybrid nanofluid on a permeable shrinking surface. The original model, expressed as partial differential equations (PDEs), is converted into ordinary differential equations (ODEs) using suitable transformations. The resulting mathematical model is then solved using the bvp4c solver in Matlab. The results demonstrated that the addition of hybrid nanoparticles had a beneficial effect on the system, increasing skin friction by 9.67% while improving thermal performance by roughly 1.27%. Additionally, skin friction and heat transfer rate increased as the magnitude of the magnetic parameter enlarged.
- Krishnan J. M., Deshpande A. P., Sunil Kumar P. B. Rheology of Complex Fluids. Springer, New York (2010).
- Kapur J. N., Gupta R. C. Two-dimensional flow of Reiner–Philippoff fluids in the inlet length of a straight channel. Applied Scientific Research, Section A. 14, 13–24 (1964).
- Cavatorta O. N., Tonini R. D. Dimensionless velocity profiles and parameter maps for non-Newtonian fluids. International Communications in Heat and Mass Transfer. 14 (4), 359–369 (1987).
- Na T. Y. Boundary layer flow of Reiner–Philippoff fluids. International Journal of Non-Linear Mechanics. 29 (6), 871–877 (1994).
- Yam K. S., Harris S. D., Ingham D. B., Pop I. Boundary-layer flow of Reiner–Philippoff fluids past a stretching wedge. International Journal of Non-Linear Mechanics. 44 (10), 1056–1062 (2009).
- Ahmad A., Qasim M., Ahmed S. Flow of Reiner–Philippoff fluid over a stretching sheet with variable thickness. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 39, 4469–4473 (2017).
- Gnaneswara Reddy M., Sudharani M. V. V. N. L., Ganesh Kumar K., Chamkha A. J., Lorenzini G. Physical aspects of Darcy–Forchheimer flow and dissipative heat transfer of Reiner–Philippoff fluid. Journal of Thermal Analysis and Calorimetry. 141, 829–838 (2020).
- Sajid T., Sagheer M., Hussain S. Impact of temperature-dependent heat source/sink and variable species diffusivity on radiative Reiner–Philippoff fluid. Mathematical Problems in Engineering. 2020, 9701860 (2020).
- Sajid T., Tanveer S., Munsab M., Sabir Z. Impact of oxytactic microorganisms and variable species diffusivity on blood-gold Reiner–Philippoff nanofluid. Applied Nanoscience. 11, 321–333 (2021).
- Ullah A., Alzahrani E. O., Shah Z. Nanofluids thin film flow of Reiner-Philippoff fluid over an unstable stretching surface with Brownian motion and thermophoresis effects. Coatings. 9 (1), 21 (2019).
- Tahir M., Ahmad A. Impact of pseudoplasticity and dilatancy of fluid on peristaltic flow and heat transfer: Reiner-Philippoff fluid model. Advances in Mechanical Engineering. 12 (12), 1687814020981184 (2020).
- Waini I., Hamzah K. B., Khashi'ie N. S. Brownian and thermophoresis diffusion effects on magnetohydrodynamic Reiner–Philippoff nanofluid flow past a shrinking sheet. Alexandria Engineering Journal. 67, 183–192 (2023).
- Waini I., Zainal N. A., Khashi'ie N. S., Hamzah K. B., Kasim A. R. M., Ishak A., Pop I. Mixed convection of MHD Reiner–Philippoff fluid flow past a vertical shrinking plate with radiative heat transfer. Chinese Journal of Physics. 83, 325–336 (2023).
- Choi S. U. S., Eastman J. A. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition. 66, 99–105 (1995).
- Khanafer K., Vafai K., Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer. 46 (19), 3639–3653 (2003).
- Oztop H. F., Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow. 29 (5), 1326–1336 (2008).
- Jana S., Salehi-Khojin A., Zhong W.-H. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochimica Acta. 462 (1–2), 45–55 (2007).
- Babu J. A. R., Kumar K. K., Rao S. S. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews. 77, 551–565 (2017).
- Sidik N. A. C., Adamu I. M., Jamil M. M., Kefayati G. H. R., Mamat R., Najafi G. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. International Communications in Heat and Mass Transfer. 78, 68–79 (2016).
- Suresh S., Venkitaraj K. P., Selvakumar P., Chandrasekar M. Synthesis of Al$_2$O$_3$-Cu/water hybrid nanofluids using two-step method and its thermophysical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 388 (1–3), 41–48 (2011).
- Takabi B., Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering. 6, 147059 (2014).
- Khashi'ie N. S., Arifin N. M., Pop I. Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria Engineering Journal. 61 (3), 1938–1945 (2022).
- Bing Kho Y., Jusoh R., Zuki Salleh M., Hisyam Ariff M., Zainuddin N. Magnetohydrodynamics flow of Ag-TiO$_2$ hybrid nanofluid over a permeable wedge with thermal radiation and viscous dissipation. Journal of Magnetism and Magnetic Materials. 565, 170284 (2023).
- Habib N. A. N., Arifin N. S., Zokri S. M., Kasim A. R. M. Aligned MHD Jeffrey Fluid Flow Containing Carbon Nanoparticles over Exponential Stretching Sheet with Viscous Dissipation and Newtonian Heating Effects. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 106 (1), 104–115 (2023).
- Khan U., Zaib A., Ishak A., Waini I., Sherif E.-S. M. Forced convective MHD flow of Reiner–Philippoff fluid induced by hybrid nanofluid past a nonlinear moving sheet with nonlinear heat sink/source. Waves in Random and Complex Media. 35 (3), 5410–5431 (2022).
- Krishna M. V., Vajravelu K. Rotating MHD flow of second grade fluid through porous medium between two vertical plates with chemical reaction, radiation absorption, Hall, and ion slip impacts. Biomass Conversion and Biorefinery. 14, 8745–8759 (2024).
- Waini I., Ishak A., Pop I., Nazar R. Dusty hybrid nanofluid flow over a shrinking sheet with magnetic field effects. International Journal of Numerical Methods for Heat & Fluid Flow. 32 (3), 1067–1091 (2022).
- Raghunath K., Mohana Ramana R., Ganteda C., Chaurasiya P. K., Tiwari D., Kumar R., Buddhi D., Saxena K. K. Processing to pass unsteady MHD flow of a second-grade fluid through a porous medium in the presence of radiation absorption exhibits diffusion thermo, Hall, and ion slip effects. Advances in Materials and Processing Technologies. 10 (2), 754–777 (2023).
- Sakkaravarthi K., Bala Anki Reddy P. Entropy generation on MHD flow of Williamson hybrid nanofluid over a permeable curved stretching/shrinking sheet with various radiations. Numerical Heat Transfer, Part B: Fundamentals. 85 (3), 231–257 (2023).
- Shi Q., Jiang T., Zhao J. A new multi-physical particle-based hybrid model for 2D incompressible generalized Newtonian two-phase MHD flow with large density ratio. Engineering Analysis with Boundary Elements. 170, 106045 (2025).
- Zeeshan A., Khalid N., Ellahi R., Khan M. I., Alamri S. Z. Analysis of nonlinear complex heat transfer MHD flow of Jeffrey nanofluid over an exponentially stretching sheet via three-phase artificial intelligence and Machine Learning techniques. Chaos, Solitons & Fractals. 189 (1), 115600 (2024).
- Hanif H., Shafie S., Rawi N. A., Kasim A. R. M. Entropy analysis of magnetized ferrofluid over a vertical flat surface with variable heating. Alexandria Engineering Journal. 65, 897–908 (2023).
- Waini I., Khan U., Zaib A. Inspection of TiO$_2$-CoFe$_2$O$_4$ nanoparticles on MHD flow toward a shrinking cylinder with radiative heat transfer. Journal of Molecular Liquids. 361, 119615 (2022).
- Tlili I., Nabwey H. A., Ashwinkumar G. P., Sandeep N. 3-D magnetohydrodynamic AA7072–AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Scientific Reports. 10, 4265 (2020).
- Kumar K. G., Reddy M. G., Sudharani M. V. V. N. L., Shehzad S. A., Chamkha A. J. Cattaneo–Christov heat diffusion phenomenon in Reiner–Philippoff fluid through a transverse magnetic field. Physica A: Statistical Mechanics and its Applications. 541, 123330 (2020).
- Rosseland S. Astrophysik. Auf Atomtheoretischer Grundlage. Springer-Verlag, Berlin (1931).
- Waini I., Ishak A., Pop I. Hybrid nanofluid flow over a permeable non-isothermal shrinking surface. Mathematics. 9 (5), 538 (2021).
- Merkin J. H. On dual solutions occurring in mixed convection in a porous medium. Journal of Engineering Mathematics. 20, 171–179 (1986).
- Weidman P. D., Kubitschek D. G., Davis A. M. J. The effect of transpiration on self-similar boundary layer flow over moving surfaces. International Journal of Engineering Science. 44 (11–12), 730–737 (2006).
- Harris S. D., Ingham D. B., Pop I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media. 77, 267–285 (2009).