У цьому дослідженні на основі українського каоліну синтезовано цеолітовмісні мікросферичні композити і модифіковано їх сполуками амонію, лантану та цирконію. Модифіковані композити деалюміновано термопаровою обробкою. Одержані матеріали охарактеризовано з використанням низки фізико-хімічних методів і протестовано в реакції окисного дегідрування бутану за участю СО2. Проаналізовано вплив ряду чинників на характеристики синтезованих зразків і пов'язані з цим зміни їхньої активності і селективності. Результати роботи показали принципову можливість використання таких композитів як каталізаторів цієї реакції.
[1] Ren, T.; Patel, M.; Blok, K. Olefins from Conventional and Heavy Feedstocks: Energy Use in Steam Cracking and Alternative Processes. Energy 2006, 31, 425–451. https://doi.org/10.1016/j.energy.2005.04.001
[2] Bender, M. An Overview of Industrial Processes for the Production of Olefins – C4 Hydrocarbons. ChemBioEng Rev. 2014, 1, 136–147. https://doi.org/10.1002/cben.201400016
[3] Cespi, D.; Passarini, F.; Vassura, I.; Cavani, F. Butadiene from Biomass, a Life Cycle Perspective to Address Sustainability in the Chemical Industry. Green Chem. 2016, 18, 1625–1638. https://doi.org/10.1039/C5GC02148K
[4] Kyriienko, P. I.; Larina, O. V.; Soloviev, S. O.; Orlyk, S. M.; Calers, C.; Dzwigaj, S. Ethanol Conversion into 1,3- Butadiene by the Lebedev Method over MTaSiBEA Zeolites (M = Ag, Cu, Zn). ACS Sustainable Chem. Eng. 2017, 5, 2075–2083. https://doi.org/10.1021/acssuschemeng.6b01728
[5] Larina, O. V.; Kurmach, M. M.; Kyriienko, P. I.; Alekseenko, L. M.; Shvets, O. V.; Soloviev, S. O. Influence of Acid–Base Characteristics of Hierarchical Cu/Zr-MTW Zeolites on Their Catalytic Properties in 1,3-Butadiene Production from Ethanol–Water Mixtures. Theor. Exp. Chem. 2021, 57, 343–350. https://doi.org/10.1007/s11237-021-09703-4
[6] Kyriienko, P. I.; Larina, O. V.; Balakin, D. Yu.; Soloviev, S. O.; Orlyk, S. M. Influence of Copper and Silver on Catalytic Performance of MgO–SiO2 System for 1,3-Butadiene Production from Aqueous Ethanol. Catal. Lett. 2022, 152, 921–930. https://doi.org/10.1007/s10562-021-03704-7
[7] Larina, O. V.; Zikrata, O. V.; Alekseenko, L. M.; Soloviev, S. O.; Orlyk, S. M. The Effect of Modification of Zn–Mg(Zr)Si Oxide Catalysts with Rare-Earth Elements (Y, La, Ce) in the Ethanol-to-1,3-Butadiene Process. Appl. Nanosci. 2023, 13, 7101– 7114. https://doi.org/10.1007/s13204-023-02876-5
[8] Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613– 10653. https://doi.org/10.1021/cr5002436
[9] Camacho-Bunquin, J.; Ferrandon, M. S.; Sohn, H.; Kropf, A. J.; Yang, C.; Wen, J.; Hackler, R. A.; Liu, C.; Celik, G.; Marshall, C. L.; Stair, P. C.; Delferro, M. Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of n-Butane to 1,3-Butadiene. ACS Catal. 2018, 8, 10058–10063. https://doi.org/10.1021/acscatal.8b02794
[10] Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Schlögl, R.; Su, D. S. Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane. Science 2008, 322, 73–77. https://doi.org/10.1126/science.1161916
[11] Coperet, C. C−H Bond Activation and Organometallic Intermediates on Isolated Metal Centers on Oxide Surfaces. Chem. Rev. 2010, 110, 656–680. https://doi.org/10.1021/cr900122p
[12] Tanimu, G.; Aitani, A. M.; Asaoka, S.; Alasiri, H. Oxidative Dehydrogenation of N-Butane to Butadiene Catalyzed by New Mesoporous Mixed Oxides NiO-(Beta-Bi2O3)-Bi2SiO5/SBA-15 System. Mol. Catal. 2020, 488, 110893. https://doi.org/10.1016/j.mcat.2020.110893
[13] BP. Statistical Review of World Energy 2021. BP p.l.c., 2021. https://www.bp.com/content/dam/bp/business- sites/en/global/corporate/pdfs/energy-economics/statistical- review/bp-stats-review-2021-full-report.pdf (accessed 2024-11-04).
[14] Redkina, A.; Konovalova, N.; Kravchenko, N.; Strelko, V. Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation. Chem. Chem. Technol. 2022, 16, 259–266. https://doi.org/10.23939/chcht16.02.259
[15] Fedevych, O. Study on Heterogeneous Catalytic Oxidative Dehydrogenation of Isopropylbenzene to α-Methylstyrene. Chem. Chem. Technol. 2022, 16, 507–514. https://doi.org/10.23939/chcht16.04.507
[16] Murgia, V.; Torres, E.; Gottifredi, J.; Sham, E. Sol–Gel Synthesis of V2O5–SiO2 Catalyst in the Oxidative Dehydrogenation of n-Butane. Appl. Catal. A: Gen. 2006, 312, 134–143. https://doi.org/10.1016/j.apcata.2006.06.042
[17] Gaspar, N. J.; Pasternak, I. S. H2S Promoted Oxidative Dehydrogenation of Ethane. Can. J. Chem. Eng. 1971, 49, 248– 251. https://doi.org/10.1002/cjce.5450490213
[18] Jiang, X.; Sharma, L.; Fung, V.; Park, S. J.; Jones, C. W.; Sumpter, B. G.; Baltrusaitis, J.; Wu, Z. Oxidative Dehydrogenation of Propane to Propylene with Soft Oxidants via Heterogeneous Catalysis. ACS Catal. 2021, 11, 2182–2234. https://doi.org/10.1021/acscatal.0c03999
[19] Pérez-Ramírez, J.; Gallardo-Llamas, A. Impact of the Preparation Method and Iron Impurities in Fe-ZSM-5 Zeolites for Propylene Production via Oxidative Dehydrogenation of Propane with N2O. Appl. Catal. A: Gen. 2005, 279, 117–123. https://doi.org/10.1016/j.apcata.2004.10.020
[20] Dasireddy, V. D. B. C.; Huš, M.; Likozar, B. Effect of O2, CO2 and N2O on Ni–Mo/Al2O3 Catalyst Oxygen Mobility in n- Butane Activation and Conversion to 1,3-Butadiene. Catal. Sci. Technol. 2017, 7, 3291–3302. https://doi.org/10.1039/C7CY01033H
[21] Gambo, Y.; Adamu, S.; Tanimu, G.; Abdullahi, I. M.; Lucky, R. A.; Ba-Shammakh, M. S.; Hossain, Mohammad. M. CO2-Mediated Oxidative Dehydrogenation of Light Alkanes to Olefins: Advances and Perspectives in Catalyst Design and Process Improvement. Appl. Catal. A: Gen. 2021, 623, 118273. https://doi.org/10.1016/j.apcata.2021.118273
[22] Xie, Z.; Tian, D.; Xie, M.; Yang, S.-Z.; Xu, Y.; Rui, N.; Lee, J. H.; Senanayake, S. D.; Li, K.; Wang, H.; et al. Interfacial Active Sites for CO2 Assisted Selective Cleavage of C–C/C–H Bonds in Ethane. Chem 2020, 6, 2703–2716. https://doi.org/10.1016/j.chempr.2020.07.011
[23] Volpe, M.; Tonetto, G.; De Lasa, H. Butane Dehydrogenation on Vanadium Supported Catalysts under Oxygen Free Atmosphere. Appl. Catal. A: Gen. 2004, 272, 69–78. https://doi.org/10.1016/j.apcata.2004.05.017
[24] Michorczyk, P.; Zeńczak-Tomera, K.; Michorczyk, B.; Węgrzyniak, A.; Basta, M.; Millot, Y.; Valentin, L.; Dzwigaj, S. Effect of Dealumination on the Catalytic Performance of Cr- Containing Beta Zeolite in Carbon Dioxide Assisted Propane Dehydrogenation. J. CO2 Util. 2020, 36, 54–63. https://doi.org/10.1016/j.jcou.2019.09.018
[25] Ajayi, B. P.; Rabindran Jermy, B.; Abussaud, B. A.; Al- Khattaf, S. Oxidative Dehydrogenation of n-Butane over Bimetallic Mesoporous and Microporous Zeolites with CO2 as Mild Oxidant. J. Porous Mater. 2013, 20, 1257–1270. https://doi.org/10.1007/s10934-013-9710-6
[26] Mehdad, A.; Gould, N. S.; Xu, B.; Lobo, R. F. Effect of Steam and CO2 on Ethane Activation over Zn-ZSM-5. Catal. Sci. Technol. 2018, 8, 358–366. https://doi.org/10.1039/C7CY01850A
[27] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Y.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5- Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521–531. https://doi.org/10.23939/chcht16.04.521
[28] Voloshyna, Y.; Pertko, O.; Povazhnyi, V.; Patrylak, L.; Yakovenko, A. Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons. Chem. Chem. Technol. 2023, 17, 373–385. https://doi.org/10.23939/chcht17.02.373
[29] Saputra, E.; Budihardjo, M. A.; Bahri, S.; Pinem, J. A. Cobalt-Exchanged Natural Zeolite Catalysts for Catalytic Oxidation of Phenolic Contaminants in Aqueous Solutions. J. Water Process Eng. 2016, 12, 47–51. https://doi.org/10.1016/j.jwpe.2016.05.012
[30] Inchaurrondo, N. S.; Font, J. Clay, Zeolite and Oxide Minerals: Natural Catalytic Materials for the Ozonation of Organic Pollutants. Molecules 2022, 27, 2151. https://doi.org/10.3390/molecules27072151
[31] Abdulloh, A.; Rahmah, U.; Permana, A. J.; Mahdy, A. A.; Budiastanti, T. A.; Fahmi, M. Z. Cracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds. Chem. Chem. Technol. 2023, 17, 625–635. https://doi.org/10.23939/chcht17.03.625
[32] Himpsl F.L. Method for Producing Cracking Catalyst. US4581341, April 8, 1986.
[33] Álvarez, A.; Borges, M.; Corral‐Pérez, J. J.; Olcina, J. G.; Hu, L.; Cornu, D.; Huang, R.; Stoian, D.; Urakawa, A. CO2 Activation over Catalytic Surfaces. ChemPhysChem 2017, 18, 3135–3141. https://doi.org/10.1002/cphc.201700782