CLASSIC DAMAGE MODELS FOR REINFORCED CONCRETE: THEORY, APPLICATION, AND LIMITATIONS

The paper presents a review of damage models for reinforced concrete (RC) structures, analyzing their theoretical foundations, advantages, limitations, and fields of application. Four key models are considered: Continuum Damage Mechanics (CDM), damage–plasticity models (CDP), microplane models, and fatigue/accumulative damage models. Their performance is compared based on such criteria as the ability to describe stiffness degradation, universality of application, computational complexity, and prediction accuracy. In addition, practical parameters for numerical implementation are summarized, and the applicability of models to different tasks is outlined. The results of the review demonstrate that none of the models is universal. Ultimately, the study emphasizes the need for integrating physically based methods with modern digital technologies, which can expand the scope of damage models in industrial and civil construction.

Surianinov, M., Neutov, S., & Yesvandzhyia, V. (2023). Bearing capacity of a beam damaged during combat actions strengthened with the use of fiber concrete. Spatial Development, (5), 212–222. https://doi.org/10.32347/2786-7269.2023.5.212-222

Blikharskyy, Y., & Kopiika, N. (2022). Analysis of the most common damages in reinforced concrete structures: a review. Theory and building practice, 4(1), 35-42. https://doi.org/10.23939/jtbp2022.01.035

Barabash, M. S., Kostyra, N. O., & Tomashevskyi, A. V. (2022). Stress-strain state and strength calculations of damaged structures using “LIRA-SAPR” software tools. Ukrainian Journal of Construction and Architecture, (1), 7–14.. https://doi.org/10.30838/J.BPSACEA.2312.220222.7.827

Voyiadjis, G. Z., Shojaei, A., Li, G., & Kattan, P. (2012). Continuum damage-healing mechanics with introduction to new healing variables. International Journal of Damage Mechanics, 21(3), 391-414. https://doi.org/10.1177/1056789510397069

J. Mazars. 1984. Application de la mécanique de l’endommagement au comportement non linéaire du béton de structure, PhD Thesis, Ecole Normale Supérieure de Cachan. https://trid.trb.org/view.aspx?id=1032710

Chaboche, J. L. (March 1, 1988). "Continuum Damage Mechanics: Part I—General Concepts." ASME. J. Appl. Mech. March 1988; 55(1): 59–64. https://doi.org/10.1115/1.3173661

Rezaei, S., Harandi, A., Brepols, T., & Reese, S. (2022). An anisotropic cohesive fracture model: Advantages and limitations of length-scale insensitive phase-field damage models. Engineering Fracture Mechanics, 261, 108177.  https://doi.org/10.1016/j.engfracmech.2021.108177   

Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of engineering mechanics, 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)

Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989). “A plastic-damage model for concrete.”Int. J. Solids and Struct., 25(3), 299–326. https://doi.org/10.1016/0020-7683(89)90050-4

Lee, J., and Fenves, G. L. (1994). “Numerical implementation of plastic-damage model for concrete under cyclic loading: Application to concrete dam.”Rep. No. UCB/SEMM-94/03, Department of Civil Engineering, University of California, Berkeley, Calif. https://escholarship.org/uc/item/3mq02824

Lee, J. (1996). “Theory and implementation of plastic-damage model for concrete structures under cyclic and dynamic loading,” PhD dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, Calif. https://www.proquest.com/openview/6a47660952aab2b1d37ff140d9d192cf/1?pq-origsite=gscholar&cbl=18750&diss=y

Al-Zuhairi, A. H., Al-Ahmed, A. H., Abdulhameed, A. A., & Hanoon, A. N. (2022). Calibration of a New Concrete Damage Plasticity Theoretical Model Based on Experimental Parameters. Civil Engineering Journal, 8(2), 225–237. https://doi.org/10.28991/CEJ-2022-08-02-03

Caner, F. C., & Bažant, Z. P. (2013). Recent progress in microplane modelling of plain concrete. In COMPLAS XII: proceedings of the XII International Conference on Computational Plasticity: fundamentals and applications (pp. 938-949). CIMNE. https://upcommons.upc.edu/bitstreams/5dbba804-8ee5-45ac-86a9-d4f970f3ef97/download

Caner, F. C., & Bažant, Z. P. (2000). Microplane model M4 for concrete. II: Algorithm and calibration. Journal of engineering mechanics, 126(9), 954-961. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(954)

Baktheer, A., Aguilar, M., & Chudoba, R. (2025). Comprehensive Review of the Microplane Framework for Constitutive Modeling Focused on Homogenization Approaches. Archives of Computational Methods in Engineering, 1-34. https://doi.org/10.1007/s11831-025-10350-4

Nastri, E., Tenore, M., & Todisco, P. (2023). Calibration of concrete damaged plasticity materials parameters for tuff masonry types of the Campania area. Engineering Structures, 283, 115927. https://doi.org/10.1016/j.engstruct.2023.115927

Benelfellah, A., Gratton, M., Caliez, M., Frachon, A., & Picart, D. (2017). VDT microplane model with anisotropic effectiveness and plasticity. Mechanics & Industry, 18(6), 607. https://doi.org/10.1051/meca/2017032

Shiri, S., Yazdani, M., & Pourgol-Mohammad, M. (2015). A fatigue damage accumulation model based on stiffness degradation of composite materials. Materials & Design, 88, 1290-1295. https://doi.org/10.1016/j.matdes.2015.09.114  

Miner, M. A. (1945). Cumulative damage in fatigue. ASME Journal of Applied Mechanics, vol. 67. https://doi.org/10.1115/1.4009458

Bobyr, M., Khalimon, O., & Bondarets, O. (2013). Phenomenological damage models of anisotropic structural materials. Journal of Mechanical Engineering NTUU" Kyiv Polytechnic Institute", (67), 5-13. https://doi.org/10.20535/2305-9001.2013.67.37390

Aeran, A., Siriwardane, S. C., Mikkelsen, O., & Langen, I. (2017). A new nonlinear fatigue damage model based only on SN curve parameters. International Journal of Fatigue, 103, 327-341. https://doi.org/10.1016/j.ijfatigue.2017.06.017