ENVIRONMENTAL ASSESSMENT OF THE STATE OF WATER BODIES IN THE ACCIDENT-IMPACTED ZONE USING INTEGRATED SPATIAL INDICATORS

In order to enhance the level of environmental safety at potentially hazardous enterprises, plans for the localization and elimination of emergency situations and accidents (PLEA) are developed. The PLEA governs the actions of enterprise personnel, population and authorities. However, under current regulations, it does not govern the procedures for monitoring the state of environmental components that may be affected in the event of an accident. This is particularly relevant to the monitoring of a water body into which accidental discharges of chemical pollutants may occur. The aim of this study is to provide a scientific justification for the use of integral (spatially interpreted) indicators of the state of water bodies in the course of post-accident remediation activities following pollution of natural water resources. Unlike simple concentration values, these indicators characterize the state of an extended part of the water body. It is proposed that the values of the integral indicator before and after the accident be compared. The usage of integral indicators is demonstrated through an analysis of retrospective data concerning the mitigation of a major man-made accident at the wastewater treatment facilities in Kharkiv. The assessment of the effectiveness of post-accident response measures using integral indicators, unlike simple concentration-based indicators, revealed incomplete restoration of the affected section of the Siverskyi Donets River following the emergency water release from the Oskil Reservoir. A distinguishing feature of integral quality indicators, compared to simple or composite water quality indicators at individual points of a water body, is their higher informational value.

1. Arabameri, A., Emamgholizadeh, S., Chaplot, B., & Zallaghi, E. (2025). Long-term spatiotemporal assessment of water quality in the Karun River, Southern Iran: a novel Python-based approach for rapid processing. Water Quality Research Journal, 60(1), 196-213. doi:  https://doi.org/10.2166/wqrj.2025.057

2. Biedunkova, O., Kuznietsov, P., & Korbutiak, V. (2025). A study of surface water quality using organic pollution indices: Comparative characteristics and educational opportunities. Water Quality Research Journal, 60(2), 333-347. doi: https://doi.org/10.2166/wqrj.2025.044

3. Chidiac, S., El Najjar, P., Ouaini, N., El Rayess, Y., & El Azz, D. (2023). A comprehensive review of water quality indices (WQIs): History, models, attempts and perspectives. Reviews in Environmental Science and Biotechnology, 22(2), 349–395. doi: https://doi.org/10.1007/s11157-023-09650-7

4. Cicerone, D. S., Quaini, K., Martín, P., & Romeo, F. (2025). Use of water quality indices in environmental management in Argentina. Water Quality Research Journal, 60(2), 366-385. doi: https://doi.org/10.2166/wqrj.2025.058

5. Di Fluri, P., Di Talia, V., Antonioni, G., & Domeneghetti, A. (2024). A short-cut methodology for the spatial assessment of the biochemical river quality. Environmental Monitoring and Assessment, 196(4), 388. doi: https://doi.org/10.1007/s10661-024-12520-6

6. Grzywna, A., Bronowicka-Mielniczuk, U., Kuśmierz, K., Sender, J., & Jóźwiakowski, K. (2024). Change in Water Quality of the Vistula River During the Emergency Discharge of Untreated Wastewater. Applied Sciences, 14(23), 11338. doi: https://doi.org/10.3390/app142311338

7. Hassan, H. B., Moniruzzaman, M., Majumder, R. K., Ahmed, F., Bhuiyan, M. A. Q., Ahsan, M. A., & Al-Asad, H. (2023). Impacts of seasonal variations and wastewater discharge on river quality and associated human health risks: A case of northwest Dhaka, Bangladesh. Heliyon, 9(7), e18171. doi: https://doi.org/10.1016/j.heliyon.2023.e18171

8. Karabyn, V., Shuryhin, V., Shutiak, S., Chmiel, M., & Kulhánek, R. (2022). Strategic environmental assessment – underestimated tool for sustainable subsoil use. Journal Environmental Problems, 7(3), 140–146. doi: https://doi.org/10.23939/ep2022.03.140

9. Lytvynov, A. L. (2022). Numerical methods: Theory and practice. O. M. Beketov National University of Urban Economy in Kharkiv.

10. Mats, A. (2023). Assessment of the status of the surface water of the Buzky estuary within Mykolaiv city. Journal Environmental Problems, 9(4), 217–224. doi: https://doi.org/10.23939/ep2023.04.217

11. Mudrak O., Khaetsky G., Mudrak G., & Serebryakov V. (2022). Assessment of the ecological status of small rivers of the Еastern Division in the context of sustainable development of the region. Environmental sciences, 6 45), 132-138. Retrieved from http://ecoj.dea.kiev.ua/archives/2022/6/21.pdf

12. Nguyen Van, H., Nguyen Viet, H., Truong Trung, K., Nguyen Hai, P., & Nguyen Dang Giang, C. (2022). A comprehensive procedure to develop water quality index: A case study to the Huong river in Thua Thien Hue province, Central Vietnam. PLOS ONE, 17(9), e0274673. doi: https://doi.org/10.1371/journal.pone.0274673

13. Odnorih, Z., Malovanyy, M., Tkachyk, Y., Romaniuk, L., & Krusir, G. (2024). Internal environmental audit of the enterprise as a component of environmental management. Journal Environmental Problems, 9(3), 150–158. doi: https://doi.org/10.23939/ep2024.03.150

14. Odnorih, Z., Manko, R., Malovanyy, M., & Soloviy, K. (2020). Results of surface water quality monitoring of the Western Bug River Basin in Lviv Region. Journal of Ecological Engineering, 21(3), 18–26. doi: https://doi.org/10.12911/22998993/118303

15. Pro zatverdzhennia Polozhennia shchodo rozrobky planiv lokalizatsii ta likvidatsii avariinykh sytuatsii i avarii: Nakaz Ministerstvа Ukrayiny z pytan nadzvychaynykh sytuatsii 1999, № 112 (1999).  Retrieved from https://zakononline.com.ua/documents/show/204476___516821

16. Pro zatverdzhennia Normatyviv ekolohichnoi bezpeky vodnykh obiektiv, shcho vykorystovuiutsia dlia potreb rybnoho hospodarstva, shchodo hrannychno dopustymykh kontsentratsii orhanichnykh ta mineralnykh rechovyn u morskykh ta prisnykh vodakh (biokhimichnoho spozhyvannia kysniu (BSK-5), khimichnoho spozhyvannia kysniu (KhSK), zavyslykh rechovyn ta amoniinoho azotu): Nakaz Ministerstvа ahrarnoi polityky ta prodovolstva Ukrainy 2012, № 471 (2012).  Retrieved from https://zakon.rada.gov.ua/laws/show/z1369-12#Text

17. Pro zatverdzhennia Hihiienichnykh normatyviv yakosti vody vodnykh obiektiv dlia zadovolennia pytnykh, hospodarsko-pobutovykh ta inshykh potrеb naselennia: Nakaz Ministerstvа okhorony zdorovia Ukrainy 2022,  № 721 (2022). Retrieved from https://ips.ligazakon.net/document/RE37860

18. Proskurnin, O., Bozhko, T., Zhuk, V., Komarysta, B., & Bendiuh, V. (2022). The expediency of taking into account complex indicators of the quality of natural water when regulating discharges of pollutants with waste waters into water bodies. Scientific Bulletin of Civil Engineering, 2(108) 79-84. Retrieved from https://svc.kname.edu.ua/index.php/svc/uk/issue/view/2

19. Vasenko, O. H., Rybalova, O. V., & Artemiev, S. R. (2015). Integral and complex assessments of the state of the environment, Kharkiv. NSUME