нейронні мережі

СИСТЕМИ КОМП’ЮТЕРНОГО ДІАГНОСТУВАННЯ: МЕТОДИ ТА ЗАСОБИ

The paper investigates computer diagnostic systems, their architectures, methods, and algorithms used in their work to diagnose cancer, including breast, lung, brain, and other tumors.

Traditional and neural network methods for image segmentation and classification are analyzed and compared, and diagnostic tools in medicine are analyzed.

The key approaches to medical image processing are investigated, in particular, the analysis of segmentation methods based on U-Net networks and classification using convolutional neural networks.

ПРОГНОЗУВАННЯ СПОЖИВАННЯ ЕЛЕКТРОЕНЕРГІЇ ЗА ДОПОМОГОЮ АНСАМБЛЮ МОДЕЛЕЙ МАШИННОГО НАВЧАННЯ

The use of machine learning models for electricity consumption prediction for smart grid has been investigated. It was found that data pre-processing can improve the performance of the energy consumption prediction model, while machine learning algorithms can improve model prediction accuracy through the integration of multiple algorithms and hyperparameter optimization. It was found that the ensemble learning method can provide better prediction accuracy than each individual method by combining the strong features of different methods that have different structural characteristics.

Models and Methods for Speech Separation in Digital Systems

The main purpose of the article is to describe state-of-the-art approaches to speech separation and de- monstrate the structures and challenges of building and training such systems. Designing efficient optimized neural network model for speech recognition requires using encoder-decoder model structure with masks estimation flow. The fully-convolutinoal SuDoRM-Rf model demonst- rates the high efficiency with relatively small number of parameters and can be boosted with accelerators, that supports convolutional operations.

Огляд методів ідентифікації захворювань за допомогою знімків комп’ютерної томографії

Розглянуто методи та підходи до комп’ютерної діагностики різних захворювань легень на підставі автоматизованого аналізу знімків комп’ютерної томографії. Виконано пошук в базі даних Google Scholar за кількома запитами на тему аналізу знімків комп’ютерної томографії за допомогою глибокого навчання та машинного навчання серед статей, опублікованих протягом або після 2017 р. Після відсіювання результатів пошуку сформовано набір із 39 статей. Набір даних розділено за датою публікації на дві категорії: до та після початку пандемії COVID-19.

Алгоритмічна складність задачі навчання двопорогових нейронів

Розглядаються питання, пов’язані з розпізнаванням скінченних множин за допомогою двопорогових нейронних елементів. Показано, що задача навчання ДНЕ є NP-повною. Також наведено умови, виконання яких забезпечує двопороговість булевих функцій, які задаються за допомогою списків рішень.

We study finite set dichotomies on bithreshold neurons. We prove that training a BN is NP-complete task. We also give sufficient conditions ensuring that decision list represents a bithreshold function.

Система виявлення літальних апаратів на основі аналізу звукових сигналів

У статті наведено сучасну систему виявлення літальних апаратів на основі аналізу звукових сигналів, розроблену з використанням технологій нейромереж та алгоритмів звукового аналізу. Під час розроблення системи були використані новітні технології, як-от акустичні датчики, одноплатні мікрокомп'ютери та зовнішні пристрої для оброблення і зберігання інформації, одержуваної з довкілля, що забезпечує швидке і точне виявлення літальних апаратів у повітрі.

Запобігання можливим пограбуванням за допомогою алгоритму глибокого навчання з обробкою камерою

Останнім часом технології глибокого навчання, а саме нейронні мережі [1], привертають все більше уваги з боку бізнесу та наукової спільноти, оскільки вони допомагають оптимізувати процеси та знаходити реальні рішення проблем набагато ефективніше та економніше, ніж багато інших підходів. Зокрема, нейронні мережі добре підходять для ситуацій, коли потрібно виявляти об’єкти або шукати подібні шаблони у відео та зображеннях, що робить їх актуальними в галузі інформаційних та вимірювальних технологій у мехатроніці та робототехніці.

Прогнозування генерації електроенергії вітровими станціями на основі інтелектуальних методів: стан справ та приклади

У зв'язку зі швидким зростанням виробництва вітрової енергії в усьому світі, прогнозування вітроенергетики відіграватиме важливу роль у роботі електроенергетичних систем та ринків електроенергії. У статті наведено огляд сучасних методів та інструментів прогнозування вироблення електроенергії вітровими електростанціями. Особлива увага приділяється інтелектуальним підходам. Розглянуто питання підготовки та використання даних для таких прогнозів. Подано розробку системи прогнозування на основі нейронних мереж, виконану авторами статті.

Analysis of Algorithms for Searching Objects in Images Using Convolutional Neural Network

The problem of finding objects in images using modern computer vision algorithms has been considered. The description of the main types of algorithms and methods for finding objects based on the use of convolutional neural networks has been given. A comparative analysis and modeling of neural network algorithms to solve the problem of finding objects in images has been conducted. The results of testing neural network models with different architectures on data sets VOC2012 and COCO have been presented.

Acquisition and Processing of Data in CPS for Remote Monitoring of the Human functional State

Data acquisition and processing in cyber-physical system for remote monitoring of the human functional state have been considered in the paper. The data processing steps, strategies for multi-step forecasting evaluation metrics and machine learning algorithms to be implemented have been analysed and described. What is important, this way it will be possible to track the condition of the sick and response to the health changes in advance.