Послідовне ядерне нечітке кластерування великих масивів даних на основі гібридної системи обчислювального інтелекту
Запропоновано архітектуру та методи самонавчання гібридної нейрофаззі системи обчислювального інтелекту для кластерування даних за умов, коли кластери, що формуються, можуть мати довільну форму і взаємно перетинатися. В основу запропонованої системи покладено нечітку узагальнену регресійну нейронну мережу та нейро-фаззі кластерувальну мережу Т. Когонена, налаштування яких основано як на лінивому навчанні, так і на навчанні, що ґрунтується на оптимізації.