Послідовне ядерне нечітке кластерування великих масивів даних на основі гібридної системи обчислювального інтелекту

Послідовне ядерне нечітке кластерування великих масивів даних на основі гібридної системи обчислювального інтелекту / Є. В. Бодянський, А. О. Дейнеко, П. Є. Жернова, О. В. Золотухін, Я. В. Хаустова // Вісник Національного університету «Львівська політехніка». Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2017. — № 872. — С. 20–24.

Authors: 

Бодянський Є. В., Дейнеко А. О., Жернова П. Є., Золотухін О. В., Хаустова Я. В.

Харківський національний університет радіоелектроніки, кафедра штучного інтелекту

Запропоновано архітектуру та методи самонавчання гібридної нейрофаззі системи обчислювального інтелекту для кластерування даних за умов, коли кластери, що формуються, можуть мати довільну форму і взаємно перетинатися. В основу запропонованої системи покладено нечітку узагальнену регресійну нейронну мережу та нейро-фаззі кластерувальну мережу Т. Когонена, налаштування яких основано як на лінивому навчанні, так і на навчанні, що ґрунтується на оптимізації.

1. Kohonen T. Self-Organizing Maps / T. Kohonen // Berlin: Springer-Verlag. – 1995. – 362 p.

2. Bezdek, J.-C. Pattern Recognition with Fuzzy Objective Function Algorithms [Text] / J. C. Bezdek. –N.Y.: Plenum Press, 1981. – 272 p.

3. Tsao E.C.-K. Fuzzy Kohonen clustering networks [Text] / E.C.-K. Tsao,J. C. Bezdek, J. C. Tsao, N. R. Pal // Pattern Recognition. – 1994. – No. 27. – P. 757–764.

4. Pascual – Marqui R. D. Smoothly distributed fuzzy C-means: a new self-organizing map / R. D. Pascual – Marqui,A.D. Pascual – Montano, K. Kochi, J.M. Caroso // Pattern Recognition. – 2001. – No. 34. – P. 2395–2402.

5. MacDonald D., Fyfe C. Clustering in data space and feature space [Text] : ESANN'2002 Proc.European Symp. on Artificial Neural Networks. Bruges (24-26 April 2002). – Belgium. – 2002. – P. 137–142.

6. Girolami, M. Mercer kernel-based clustering in feature space [Text] / M. Girolami // IEEE Trans. on Neural Networks. – 2002. – Vol. 13. – No. 3. – P. 780–784.

7. Camastra F. A novel kernel method for clustering [Text] / F. Camastra, A. Verri // IEEE Trans. on Pattern Analysis and Machine Intelligence. – 2005. – No. 5. – P. 801–805.

8. Schölkopf, B. Learning with Kernels [Text] / B. Schölkopf, A. Smola //Cambridge M. A.: MIT Press. – 2002. – 648 p.

9. Kacprzyk J. Springer Handbook of Computational Intelligence [Text] / J. Kacprzyk, W. Pedrycz. – Berlin Heidelberg: Springer – Verlag, 2015. – 1634 p.

10. Haykin, S. Neural Networks and Learning Machines [Text] / S. Haykin. – N.Y. :Prentice Hall, 2009. – 1634 p.

11. Cortes C. Support Vector Networks [Texy] / C. Cortes, V. Vapnik // Machine Learning. – 1995. – No. 20. – P. 273–297.

12. Parzen E. On the estimation of a probability density function and the mode / E.Parzen // Ann. Math. Statist. – 1962. – No. 38. – P. 1065–1076.

13. Specht, D.F. A general regression neural network [Text] / D.F. Specht // IEEE Trans. on Neural Networks. – 1991. – Vol. 2. – P. 568–576.

14. Zahirniak D. Pattern recognition using radial basis function network. [Text] / D. Zahirniak, R. Chapman, S. Rogers, B. Suter, M. Kabrisky, V. Piati // Proc 6th Ann. Aerospace Application of Artificial Intelligence Conf. – Dayton, OH. – 1990. – P. 249–260.

15. Cover T. M. Geometrical and statistical properties of systems of linear inequali-ties with applications in pattern recognition [Text] / T.M. Cover // IEEE Trans. on Electronic Computers. – 1965. – No. 14. – P. 326–334.

16. Angelov, P. Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems [Text] /P. Angelov // Heidelberg-New York: Springer-Verlag. – 2002. – 211 p.

17. Kasabov N. Evolving Connectionist Systems [Text] / N. Kasabov – London: Springer-Verlag. – 2003 – 307 p.

18. Angelov P.Evolving computational intelligence systems [Text] / P. Angelov, N. Kasabov // Proc. 1st Int. Workshop on Genetic Fuzzy Systems. – Granada, Spain. – 2005. – P. 76–82.

19. Lughofer E. Evolving Fuzzy Systems – Methodologies and Applications [Text] / E. Lughofer. – Studies in Fuzziness and Soft Computing. – Springer-Berlin. – 2011. – 410 p.