Fermi level

INVESTIGATION OF SENSITIVE ELEMENTS OF TEMPERATURE TRANSDUCERS BASED ON THERMOMETRIC MATERIAL Lu1-xScxNiSb

The results of experimental studies of sensitive elements of temperature transducers based on semiconductor thermometric material Lu1-xScxNiSb, x=0.01–0.10, are presented. Thermometric materials Lu1-xScxNiSb were made by fusing a mixture of components in an electric arc furnace with a tungsten electrode (cathode) in an atmosphere of purified argon under a pressure of 0.1 kPa on a copper water-cooled hearth (anode). Heat treatment of alloys consisted of homogenizing annealing for 720 h in vacuumed to 1.0 PA at a temperature of 1073 K.

СОБЛИВОСТІ МОДЕЛЮВАННЯ ХАРАКТЕРИСТИК ТЕРМОМЕТРИЧНОГО МАТЕРІАЛУ Lu1-xZrxNiSb

The results of modeling the thermometric characteristics of the semiconductor solid solution Lu1-xZrxNiSb, which is a promising thermometric material for the manufacture of sensitive elements of thermoelectric and electro resistive thermocouples, are presented. Modeling of the electronic structure of Lu1-xZrxNiSb was performed by the Korringa-Kohn-Rostoker (KKR) method in the approximation of coherent potential and local density and by the full-potential method of linearized plane waves (FLAPW).