машинне навчання

ГІБРИДНА МОДЕЛЬ ВИЯВЛЕННЯ МЕРЕЖЕВИХ АНОМАЛІЙ З ВИКОРИСТАННЯМ МАШИННОГО НАВЧАННЯ

Зростаюча складність кіберзагроз вимагає розробки ефективних методів виявлення та класифікації атак у мережевому трафіку. У даному дослідженні проаналізовано ефективність трьох популярних алгоритмів машинного навчання: Random Forest, який використовується для виявлення аномалій, Support Vector Machines (SVM), що виконує класифікацію кіберзагроз, та автоенкодерів, які застосовуються для попередньої обробки даних та глибокого аналізу трафіку.

МОДЕЛЮВАННЯ ШТУЧНОГО ІНТЕЛЕКТУ ДЛЯ ПРОГНОЗУВАННЯ ДОХОДУ

У статті проаналізовано можливості прогнозування доходів великих корпорацій, таких як Apple, Amazon, GE, IBM і ExxonMobil, використовуючи алгоритми машинного навчання Random Forest та XGBoost, а також Tableau як еталонний інструмент аналітики.

МОДЕЛІ ПРОГНОЗУВАННЯ ЧАСОВИХ РЯДІВ ARIMA ТА LSTM В ЕКОНОМІЦІ ТА ФІНАНСАХ

Прогнозування часових рядів є важливим завданням у економіці, бізнесі та фінансах. Традиційно для прогнозування використовуються такі методи, як авторегресія (AR), рухоме середнє (MA), експоненціальне згладжування (SES) і, найпоширеніше, авторегресійна інтегрована модель ковзного середнього (ARIMA). Модель ARIMA продемонструвала високу точність у прогнозуванні майбутніх значень часових рядів. Завдяки розвитку обчислювальних потужностей та алгоритмів глибокого навчання з’явилися нові підходи до прогнозування.

МЕТОДОЛОГІЯ ВПРОВАДЖЕННЯ САМОНАВЧАЛЬНИХ МОДЕЛЕЙ ЗВОРОТНОГО ЗВ'ЯЗКУ В СИСТЕМИ CRM: ПОРІВНЯЛЬНИЙ АНАЛІЗ ЕФЕКТИВНОСТІ

У статті запропоновано методологію впровадження самонавчальних моделей зворотного зв'язку в системи управління взаємовідносинами з клієнтами (CRM). Досліджено основні проблеми існуючих CRM-систем, пов'язані з недостатньою адаптивністю до змін у поведінці клієнтів та обмеженими можливостями автоматичного аналізу даних. На основі аналізу сучасних підходів машинного навчання розроблено комплексну модель впровадження самонавчальних алгоритмів, що базується на трирівневій архітектурі: збір та обробка даних, аналітична обробка та адаптивна взаємодія.

ОЦІНКА ІНСТРУМЕНТІВ МУЛЬТИМОДАЛЬНОЇ СИНХРОНІЗАЦІЇ ДАНИХ

Постійне зростання обсягів даних вимагає розробки ефективних методів управління, обробки та зберігання інформації. Крім того, доцільно застосовувати мультимодальні підходи агрегації знань для отримання додаткових знань. Зазвичай проблема ефективної обробки мультимодальних даних пов'язана з високоякісною попередньою обробкою даних. Одним із найважливіших етапів попередньої обробки є синхронізація мультимодальних потоків даних для аналізу складних взаємодій у різних типах даних.

Front-end фреймворк для побудови застосунків з адаптивним графічним інтерфейсом засобами машинного навчання

У статті розглядаються підходи до розробки front-end фреймворку для створення веб-застосунків з адаптивним графічним інтерфейсом, що динамічно підлаштовується під індивідуальні потреби користувачів за допомогою алгоритмів машинного навчання. Актуальність проблеми полягає в необхідності розробки інтерфейсів, здатних одночасно відповідати потребам різних демографічних груп, що вимагає гнучкості в налаштуванні користувацького досвіду (UX) та інтерфейсу (UI) сучасних веб-сайтів.

Ансамблеві методи на основі центрування для сегментації зображення

Ансамблеві методи можуть використовуватись для багатьох завдань, одними з найпопулярніших є: класифікація, регресія та сегментація зображень. Сегментація зображень є складною задачею, де використання ансамблевих методів машинного навчання дає можливість покращити точність передбачень нейронних мереж.

СИСТЕМА ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ ВИЯВЛЕННЯ ДЕЗІНФОРМАЦІЇ, ФЕЙКІВ ТА ПРОПАГАНДИ НА ОСНОВІ МАШИННОГО НАВЧАННЯ

Внаслідок спрощення процесів створення та поширення новин через інтернет, а також через фізичну неможливість перевірки великих обсягів інформації, що циркулює у мережі, значно зросли обсяги поширення дезінформації та фейкових новин. Побудовано систему підтримки прийняття рішень щодо виявлення дезінформації, фейків та пропаганди на основі машинного навчання. Досліджено методику аналізу тексту новин для ідентифікації фейку та передбачення виявлення дезінформації в текстах новин. У зв’язку з цим виявлення неправдивих новин стає критичним завданням.

ВИКОРИСТАННЯ ШТУЧНИХ НЕЙРОННИХ МЕРЕЖ У СИСТЕМІ УПРАВЛІННЯ МОБІЛЬНОЮ РОБОТОТЕХНІЧНОЮ ПЛАТФОРМОЮ

В епоху стрімкого технологічного розвитку, коли робототехніка й інтелектуальні системи стають невідʼємною частиною повсякденного життя, важливість розроблення систем управління мобільними робототехнічними платформами з використанням штучних нейронних мереж стає надзвичайно високою та актуальною. Для цієї галузі характерна не тільки істотна практична потреба, але й значний потенціал в інноваційному розвитку. Розвиток сучасної робототехніки та обчислювального інтелекту спонукав до створення ефективніших та адаптивніших мобільних робототехнічних систем.

Neuro-symbolic models for ensuring cybersecurity in critical cyber-physical systems

У поданій статті представлені результати всебічного дослідження застосування нейросимволічного підходу для виявлення та запобігання кіберзагрозам у залізничних системах, критичному компоненті кіберфізичної інфраструктури. Зростаюча складність та інтеграція фізичних систем із цифровими технологіями зробили таку інфраструктуру вразливою до кібератак, коли порушення можуть призвести до тяжких наслідків, зокрема системних збоїв, фінансових втрат і загроз громадській безпеці та навколишньому середовищу.