машинне навчання

Інтелектуальна система передбачення фейкових новин на основі технологій NLP та машинного навчання

У статті описано дослідження ідентифікації фейкових новин на основі опрацювання природної мови, аналізу великих даних і технології глибокого навчання. Розроблена система автоматично перевіряє новини на наявність ознак фейкових новин, таких як використання маніпулятивної мови, неперевірених джерел і недостовірної інформації. Візуалізація даних реалізована на основі дружнього інтерфейсу користувача, який відображає результати аналізу новин у зручному та зрозумілому форматі.

Аналіз використання HS та HTS кодів у системах митної класифікації: виклики та можливості інтеграції іт-технологій

Проаналізовано особливості використання гармонізованої системи опису та кодування товарів, гармонізованої тарифної системи кодів у сучасних системах митної класифікації. Особлива увага приділяється викликам, що виникають при застосуванні цих кодів, зокрема через складність товарної номенклатури, а також різноманітність описів товарів. Крім того, досліджуються можливості інтеграції ІТ-технологій, машинного навчання та методів штучного інтелекту для автоматизації та оптимізації процедур митної класифікації.

Застосування рекурентних нейронних мереж для покращення процесу планування scrum-спринтів

У дослідженні обґрунтовано доцільність використання технології машинного навчання для вдосконалення процесу планування ітерацій в ІТ проєктах, що реалізуються з використанням методології Scrum. Постановлено проблему планування продуктивності в командах. Сформовано предмет і обʼєкт дослідження. Описано очікувану наукову новизну та практичну значущість результатів дослідження. Розглянуто комплекс можливих проблем, пов’язаних з плануванням задач в ІТ проєктах, зокрема, точність прогнозування продуктивності команд.

Комп’ютерне моделювання логістичної регресії для бінарної класифікації

У цій статті розглянуто практичні аспекти застосування логістичної регресії для бінарної класифікації даних. Логістична регресія визначає імовірність належності об’єкта до одного із двох класів. Ця імовірність обчислюється за допомогою сигмоїдної функції, аргументом якої є лінійна згортка вектора ознак об’єкта із ваговими коефіцієнтами, отриманими у ході мінімізації логарифмічної функції втрат. Прогнозовані мітки класу визначаються порівнянням обчисленої імовірності із заданим пороговим значенням.

Інформаційна система для адаптації методів сегментації дорожніх смуг у системах навігації з метою підвищення точності виявлення дорожніх знаків

У сучасному світі, де швидкість технологічних змін надзвичайно вражає, сфера дорожнього руху не залишається осторонь. Використання сегментації смуг на дорозі стає ключовим елементом не лише для забезпечення безпеки, але й для вдосконалення систем навігації та виявлення дорожніх знаків. Цей підхід відкриває двері до нового рівня ефективності та точності управління дорожнім рухом, сприяючи покращенню якості та безпеки нашого пересування. Давайте зануримося в деталі цього захоплюючого та перспективного напрямку розвитку технологій дорожнього транспорту.

Інтелектуальна система комплексного аналізу військової інформації на основі машинного навчання та NLP для допомоги командирам тактичних ланок

В статті описано результати дослідження процесів комплексного аналізу військової інформації на основі машинного навчання та опрацювання природньої мови для допомоги командирам тактичних ланок. Система повинна дозволяти користувачам мати наступні можливості: об’єднання словника та інформаційного матеріалу, додавання термінів та абревіатур в словник, класифікація об’єктів для радіотехнічної розвідки, візуалізація повітряних об’єктів, класифікація повітряних об’єктів, користування інформаційними матеріалами, організування інформаційних матеріалів.

РОЗУМІННЯ ВЕЛИКИХ МОВНИХ МОДЕЛЕЙ: МАЙБУТНЄ ШТУЧНОГО ІНТЕЛЕКТУ

У статті проведено дослідження новітнього напрямку у штучному інтелекті - Великі Мовні Моделі, які відкривають нову еру в обробці природної мови, надаючи можливість створення більш гнучких і адаптивних систем. З їх допомогою досягається високий рівень розуміння контексту, що збагачує досвід користувачів та розширює сфери застосування штучного інтелекту. Великі мовні моделі мають величезний потенціал для переосмислення взаємодії людини з технологіями та зміни уявлення про машинне навчання.

ГІПОТЕЗА ФРАКТАЛЬНОГО РИНКУ ДЛЯ ТОРГІВЛІ ТА ПРОГНОЗУВАННЯ РИНКОВОЇ ЦІНИ

У статті розглядаються основні принципи гіпотези фрактального ринку (ГФР) та її застосування у торгівлі і прогнозуванні ринкової ціни. ГФР пропонує нову перспективу для розуміння ринкових динамік, дозволяє виявляти закономірності, які часто не можуть бути враховані традиційними методами аналізу. Особлива увага приділяється масштабним властивостям ринкових даних, що дозволяє застосовувати моделі прогнозування на різних часових інтервалах, від короткострокових до довгострокових прогнозів.

Математична модель логістичної регресії для бінарної класифікації. Ч. 2. Процеси підготовки, навчання і тестування даних

У цій статті розглянуто теоретичні аспекти логістичної регресії для бінарної класифікації даних, включаючи процеси підготовки даних, навчання, тестування та показники оцінювання моделей.

Сформульовано вимоги до вхідних наборів даних, описано способи кодування категоріальних даних, визначено та обґрунтовано способи масштабування вхідних ознак.

Математична модель логістичної регресії для бінарної класифікації. Ч. 1. Регресійні моделі узагальнення даних

У цій статті виконано математичне обґрунтування логістичної регресії як ефективного і простого для реалізації методу машинного навчання.

Проведено огляд літературних джерел за напрямком статистичного опрацювання, аналізу та класифікації даних методом логістичної регресії, що підтвердило популярність застосування цього методу у різних предметних областях.