авторегресійна модель

МАТЕМАТИЧНІ МОДЕЛІ ДЛЯ АНАЛІЗУ ТА ПРОГНОЗУВАННЯ ЗАБРУДНЕННЯ РІЧКОВОЇ ВОДИ З ВИКОРИСТАННЯМ МУЛЬТИФРАКТАЛЬНОГО МЕТОДУ

Стаття досліджує застосування мультифрактального аналізу до вибраних часових рядів даних про забруднення води та подальше прогнозування за показником біохімічного споживання кисню (БСК) на основі фрактальної моделі ARFIMA. Для оцінки параметра фрактальної диференціації в моделі ARFIMA використано мультифрактальний алгоритм MFDFA. Отримані результати порівнюються з аналогічними, отриманими за допомогою авторегресійної моделі ARIMA та базової фрактальної моделі ARFIMA.

РОЗРОБЛЕННЯ ПРОГРАМНО-АЛГОРИТМІЧНОГО ЗАБЕЗПЕЧЕННЯ ДЛЯ ПРОГНОЗУВАННЯ ЗАБРУДНЕННЯ РІЧКОВИХ ВОД З ВИКОРИСТАННЯМ МЕТОДІВ ФРАКТАЛЬНОГО АНАЛІЗУ

У статті досліджено застосування фрактальної моделі ARFIMA для прогнозування динаміки забруднення річкових вод на основі вимірювання біохімічного споживання кисню . Дослідження починається з огляду суміжних робіт у галузі аналізу якості води. На цьому етапі також вибирається відповідний набір даних, який використовується для навчання ARFIMA, однієї з моделей машинного навчання. Напівпараметричний алгоритм GPH застосовано для оцінки параметра фрактального диференціювання ARFIMA.