TECHNOLOGICAL FEATURES OF OBTAINING POLYLACTIDE EXTRUSION PRODUCTS

2021;
: 179-187
1
Lviv Polytechnic National University, The John Paul II Catholic University of Lublin
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The technological parameters of the process and the design of the extrusion head for the manufacture of products such as pipe of polylactide composite materials by extrusion, its construction elements are calculated. Prototypes of a product made of biodegradable plastic were obtained.

The technological and operational properties of the obtained products depending on the content of talc filler and heat treatment parameters are investigated. The highest values of Vickat softening point are observed for heat-treated materials with a filler content of 2 %, and the optimal temperature and heat treatment are 120 °C and time 1015 min, respectively.

1. Jean-François Agassant, Pierre Avenas, Pierre J. Carreau, Bruno Vergnes, Michel Vincent (2017) Polymer Processing Principles and Modellin. Munich:Hanser, 2017, 320 p.
https://doi.org/10.3139/9781569906064.fm
2. Bouzouita A., Notta-Cuvier D., Delille R., Lauro F., Raquez J.-M., Dubois P. (2017) Design of toughened PLA based material for application in structuressubjected to severe loading conditions. Part 2. Quasi-static tensile tests and dynamic mechanical analysis at ambient and moderately high temperature, Polymer Testing, 57, 235-244.
https://doi.org/10.1016/j.polymertesting.2016.11.034
3. Hao X., Kaschta J., Schubert D.W. (2016) Viscous and elastic properties of polylactide melts filled with silica particles: Effect of particle size and concentration, Composites Part B-Engineering, 89, 44-53.
https://doi.org/10.1016/j.compositesb.2015.11.030
4. Armentano I., Dottori M., Fortunati E., Mattioli S., Kenny J.M. (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polymer Degradation and Stability, 95, 2126-2146.
https://doi.org/10.1016/j.polymdegradstab.2010.06.007
5. Auras R., Harte B., Selke S. (2004) An overview of polylactides as packaging materials, Macromol. Biosci, 4, 835-864.
https://doi.org/10.1002/mabi.200400043
6. Lopes M. S., Jardini A. L., Filho R. M. (2012) Poly(lactic acid) production for tissue engineering Applications, Procedia Eng, 42, 1402-.
https://doi.org/10.1016/j.proeng.2012.07.534
7. Masyuk А. S., Kysil Kh. V., Katruk D. S., Skorokhoda V. I., Bilyi L. M. &. Humenetskyi Т. V. (2020) Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers, Materials Science, 56 (4), 319-326.
https://doi.org/10.1007/s11003-020-00432-y
8. Levytskyi V., Katruk D., Masyuk A., Kysil Kh., Bratychak M. Jr., Chopyk N. (2021) Resistance of Polylactide Materials to Water Mediums of the Various Natures, Chemistry&Chemical Technology, 15 (2), 191-197.
https://doi.org/10.23939/chcht15.02.191
9. Lim L. T., Auras R., Rubino M., (2008) Processing technologies for poly(lacticacid). Prog. Polym. Sci. 33, 820-852.
https://doi.org/10.1016/j.progpolymsci.2008.05.004
10. Kuhnert I., Sporer Y., Brunig H., Tran N. H. A., Rudolph N., (2017), Processing of poly(lactic acid). Adv. Polym. Sci. 282, 10-33.
https://doi.org/10.1007/12_2017_30
11. Катрук Д. С., Кисіль Х. В., Куліш Б. І., Масюк А. С., Скорохода В. Й., Левицький В. Є. (2020) Експлуатаційні характеристики композитів полілактид - тальк. Chemistry, Technology and Application of Substances,  (3) 2, 163-168.
https://doi.org/10.23939/ctas2020.02.163
12. F. Carrasco, P. Pagèsb, J. Gámez-Pérez, O. O. Santana, M. L. Maspoch (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95, 116-125.
https://doi.org/10.1016/j.polymdegradstab.2009.11.045
13. Ana Nazareth Silva, Talita Cipriano, H. M. da F. Thomé da Asilva, Gustavo Monteiro (2014). Thermal, Rheological and Morphological Properties of Poly(Lactic Acid) (PLA) and Talc Composites. Polímeros, 24, 3, 276-282.
https://doi.org/10.4322/polimeros.2014.067