INVESTIGATION OF INFLUENCE OF CONDITIONS OF OBTAINING PA6/MMT NANOCOMPOSITES ON THEIR THERMAL PROPERTIES

2022;
: 160-165
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Technical University of Kosice (Slovakia)
5
Lviv Polytechnic National University

The influence of additional thermal and thermomechanical treatment of PA6/MMT nanocomposites obtained from the formic acid solution on their heat resistance and technological properties was investigated. Thermal analysis established that heating the nanocomposite to a temperature of 250 ºС and treating it on a capillary plastometer IIRT at a temperature of 230 ºС increases the degree of crystallinity and heat resistance of the samples. It is shown that additionally treated nanocomposites also have lower fluidity and significantly higher values of softening temperature.

1.                  Krishna, S., & Patel, C. M. (2020). Computational and experimental study of mechanical properties of Nylon 6 nanocomposites reinforced with nanomilled cellulose. Mechanics of Materials, 143, 103318. https://doi.org/10.1016/j.mechmat.2020.103318
https://doi.org/10.1016/j.mechmat.2020.103318
2.                  Ma, Y., Jin, S., Yokozeki, T., Ueda, M., Yang, Y., Elbadry, E. A., Hamada, H., & Sugahara, T. (2020). Effect of hot water on the mechanical performance of unidirectional carbon fiber-reinforced nylon 6 composites. Composites Science and Technology, 200, 108426. https://doi.org/10.1016/j.compscitech.2020.108426
https://doi.org/10.1016/j.compscitech.2020.108426
3.                  Hagihara, H., Watanabe, R., Shimada, T., Funabashi, M., Kunioka, M., & Sato, H. (2018). Degradation mechanism of carbon fiber-reinforced thermoplastics exposed to hot steam studied by chemical and structural analyses of nylon 6 matrix. Composites Part A: Applied Science and Manufacturing, 112, 126-133. https://doi.org/10.1016/j.compositesa.2018.05.034
https://doi.org/10.1016/j.compositesa.2018.05.034
4.                  Yañez-Macias, R., Hernandez-Hernandez, E., Gallardo-Vega, C. A., Ledezma-Rodríguez, R., Ziolo, R. F., Mendoza-Tolentino, Y., Fernández-Tavizon, S., Avila-Orta, C. A., Garcia-Hernandez, Z., & Gonzalez-Morones, P. (2019). Covalent grafting of unfunctionalized pristine MWCNT with nylon-6 by microwave assist in-situ polymerization. Polymer, 185, 121946. https://doi.org/10.1016/j.polymer.2019.121946
https://doi.org/10.1016/j.polymer.2019.121946
5.                  El Achaby, M., Ennajih, H., Arrakhiz, F. Z., El Kadib, A., Bouhfid, R., Essassi, E., & Qaiss, A. (2013). Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of Polymer Organoclay nanocomposites. Composites Part B: Engineering, 51, 310-317. https://doi.org/10.1016/j.compositesb.2013.03.009
https://doi.org/10.1016/j.compositesb.2013.03.009
6.                  Alves, J. L., Rosa, P. de, & Morales, A. R. (2017). Evaluation of organic modification of montmorillonite with Ionic and nonionic surfactants. Applied Clay Science, 150, 23-33. https://doi.org/10.1016/j.clay.2017.09.001
https://doi.org/10.1016/j.clay.2017.09.001
7.                  Rajeesh, K. R., Gnanamoorthy, R., & Velmurugan, R. (2010). Effect of humidity on the indentation hardness and flexural fatigue behavior of polyamide 6 nanocomposite. Materials Science and Engineering: A, 527(12), 2826-2830. https://doi.org/10.1016/j.msea.2010.01.070
https://doi.org/10.1016/j.msea.2010.01.070
8.                  Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of Nylon 6-Clay Hybrid. Journal of Materials Research, 8(5), 1185-1189. https://doi.org/10.1557/jmr.1993.1185
https://doi.org/10.1557/JMR.1993.1185
9.                  Chen, H.-B., & Schiraldi, D. A. (2018). Flammability of polymer/clay aerogel composites: An overview. Polymer Reviews, 59(1), 1-24. https://doi.org/10.1080/15583724.2018.1450756
https://doi.org/10.1080/15583724.2018.1450756
10.              Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H. R., & Peijs, T. (2009). Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology, 69(15-16), 2587-2595. https://doi.org/10.1016/j.compscitech.2009.07.016
https://doi.org/10.1016/j.compscitech.2009.07.016
11.              Fornes, T. D., Hunter, D. L., & Paul, D. R. (2004). Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer, 45(7), 2321-2331. https://doi.org/10.1016/j.polymer.2004.01.061
https://doi.org/10.1016/j.polymer.2004.01.061
12.              Dasari, A., Yu, Z., Mai, Y., Hu, G., & Varlet, J. (2005). Clay exfoliation and organic modification on wear of Nylon 6 nanocomposites processed by different routes. Composites Science and Technology, 65(15-16), 2314-2328. https://doi.org/10.1016/j.compscitech.2005.06.017
https://doi.org/10.1016/j.compscitech.2005.06.017
13.              McAdam, C., Hudson, N., Liggat, J., & Pethrick, R. (2008). Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science, 108(4), 2242-2251. doi: 10.1002/app.25599
https://doi.org/10.1002/app.25599
14.              Seltzer, R., Mai, Y., & Frontini, P. (2012). Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending. Composites Part B: Engineering, 43(1), 83-89. doi: 10.1016/j.compositesb.2011.04.035
https://doi.org/10.1016/j.compositesb.2011.04.035
15.              Krasinskyi, V. V., Suberlyak, O. V., Zemke, V. M., Chekailo, M. V., & Pankiv, M. O. (2021). Obtaining of nanocomposites based on montmorillonite and Polyamide in solution. Chemistry, Technology and Application of Substances, 4(1), 172-178. https://doi.org/10.23939/ctas2021.01.172
https://doi.org/10.23939/ctas2021.01.172
16.              Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 44-50. doi: 10.15587/1729-4061.2017.108465
https://doi.org/10.15587/1729-4061.2017.108465
17.              Krasinskyi, V., Suberlyak, O., Dulebová, Ľ., & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3-10. doi: 10.4028/www.scientific.net/kem.756.3
https://doi.org/10.4028/www.scientific.net/KEM.756.3