The technique of averaging data for construction of the regional model ionosphere

: pp. 35 - 41
Received: May 12, 2013
Accepted: March 24, 2014
Lviv Polytechnic National University

Purpose. The purpose of this paper is to develop an algorithm of regular averaging time series VTEC to investigate the daily course of ionospheric parameters with the use of empirical methods of analysis. Methodology. In order to improve the preparation of data which was used for the construction regional model of the ionosphere, we carry out the averaging parameter VTEC at 17 stations on the ZAKPOS network. We define the value of the parameter VTEC using the algorithm created by authors for 25 days in 2013. Results. Based on these studies, we have developed a technique for the regular averaging parameter VTEC around the grounds and time and their mean square deviations were calculated. Investigated the dynamics of the averaged VTEC values for the period from 131 to 161 days in 2013 for a 17-station network of ZAKPOS. Calculated that compensate VTEC for GNSS-measurements on different days advisable to carry approximately 50 minutes after the index reached a minimum VTEC values. Originality.Scientific novelty is the improvement of our early proposed method for determining the ТЕС, that is most optimal for implementation in real time in solving problems of coordinate support. Practical significance. It were made the conclusions relating to the recommendations as to what time of day it is expedient to carry out GNSS-measurement to achieve appropriate accuracy of the results. Offered technique of averaging we recommend to use for improvement of the model of the ionosphere on the territory of Western Ukraine.

  1. Evstafyev O.V. Nazemnaya infrastruktura GNSS dlja tochnogo pozycionirovaniya [Terrestrial infrastructure for precise GNSS in zitsionirovaniya]. Geoprofi,2008, № 1–2.45.
  2. Savchuk S.G., Yankiv-Vitkovska L.M. Vyznachennia parametriv ionosfery u merezhi suputnykovyh stanciy Zahidnoyi Ukrainy [The definitions of the parameters the ionosphere on the network GNSS-stations in Western Ukraine]. Abstract 13- Ukrainian conference of space studies. Krym, Evpatoria, 2013, P. 60.
  3. Synyakin A. K., Koshelev A. V. Fizicheskiye princypy raboty GPS/Glonass [Physical principles of GPS / GLONASS [Text]: monograph]. Novosibirsk: SGGA, 2009, p 110.
  4. Yankiv-Vitkovska L.M. Pro doslidzhennia parametriv ionosfery dla GNSS-stanciy SULP, RVNE ta SHAZ [About the study of the ionosphere parameters for GNSS-stations SULP, RVNE and SHAZ]. Geodesy, Cartography, and Aerial Photography. no. 78, 2013, Lviv, pp. 169–172.
  5. Yankiv-Vitkovska L.M. Pro obchyslennia parametriv ionosfery za dopomogoyu specialnogo algorytmu: pershi rezultaty [On ionosphere parameter calculating with the use of a special algorithm: first results ]. Space science and technology, 2012. T. 18. no. 6, P.73–75.
  6. Official website of the Institute for Space Studies NAN of Ukraine:
  7. ZAKPOS – network of reference GPS-stations //
  8. Belehaki A., Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, M. Hatzopoulos, 2006, Monitoring and forecasting the ionosphere over Europe: The DIAS project, Space Weather, 4, S12002, doi:10.1029/2006SW000270.
  9. Bilitza D. (1990). International reference ionosphere 1990, report 90-22. Technical report, National Space Science Data Center/World Data Center A for Rockets and Satellites, Code 930.2, Goddard Space Flight Center.
  10. Ivanov-Kholodny G. S. and A. V. Mikhailov (1986). The Prediction of Ionosphere Conditions. Institute of applied geophysics, geocohydromet. Moscow, U.S.S.R.
  11. Hofmann-Wellenhof B., H. Lichtenegger and J. Collins (2001). Global Positioning System:Theory and practice. 5th revised edition: Springer-Verlag.
  12. Hofmann-Wellenhof B., H. Lichtenegger and E. Wasle (2008). Global Navigation Satellite Systems: GPS, GLONASS, Galileo and more. SpringerWienNewYork.
  13. Klobuchar J. A., 1996. Ionospheric Effects on GPS. In: Global Positioning System: Theory and Applications, Volume 1, ed. by B. W. Parkinson and J. J. Spilker, American Institute of Aeronautics and Astronautics, 370 L’Enfant Promenade, SW. Washington DC, 20024.
  14. Komjathy A. and R. B. LangleY, 1996. An Assessment of Predicted and Measured Ionospheric Total Electron Content Using a Regional GPS Network. In: http:/ /, accessed 17 September 1998.
  15. MannuccI A. J., B. D. Wilson and C. D. Edwards, 1993. A New Method for Monitoring the Earth’s Ionospheric Total Electron Content Using GPS Global Network. Proceedings of ION GPS-93, Salt Lake City, UT, 22-24 September, The Institute of Navigation, Alexandria, VA, 1323–1332.
  16. Stanislawska I., J. Lstovicka, A. Bourdillon, B. Zolesi, Lj. R. Cander, 2010, Monitoring and modeling of ionospheric characteristics in the framework of European COST 296 Action MIERS, Space Weather, Doi:10.1029/2009SW000493.
  17. Stanislawska I., Jakowski N., Béniguel Y., De Franceschi G., Hernandez Pajares M., Jacobsen, Knut Stanley; Tomasik L., Warnant R., Wautelet G. Monitoring, tracking and forecasting ionospheric perturbations using GNSS techniques / JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2012, 10.1051/2012022.
  18. Tsugawa T., A. Saito and Y. Otsuka (2004). A statistical study of large-scale traveling ionospheric disturbances using the gps network in japan. Journal of Geophysical Research 109. doi:10.1029/2003JA010302.
  19. Van der Marel H. (1993). Modelling of GPS ionospheric delays for geodetic applications.In URSI commissie G meeting, March 12, Eindhoven, The Netherlands.