A study of devices used for geometric parameter measurement of engineering building construction

1
Lviv Polytechnic National University
2
Engineering geodesy department of Lviv Polytechnic National University
3
Lviv Polytechnic National University

The aim. To study the abilities of electronic tacheometers to control geometric parameters of engineering constructions. Methods. The analysis of standard-setting documents for conducting geodetic works in industrial production and construction was carried out. The methods and devices used for this purpose were explored. Results. It is proposed to use electronic tacheometer and special methodology for such tasks. For this purpose, the research of a distance-measuring theodolite of an electronic tacheometer was conducted. In order to control the measurement of distances directly on the construction site, a 10-meter invar wire stand was developed, which was previously tested at the 1st-grade standard in the research institute of metrology with an accuracy of no greater than 0.01 mm. The method of transmission of reference distances, where special spheres and geodetic points are fixed by an aperture were developed. For direct measurements of the sections, the method of invar wire tensing was investigated, and mechanical balancing of the weighing system was performed. The control of the instrument's angular values ​​was fulfilled on a higher-order metrological installation. The influence of non-perpendicular axes and eccentricity on the accuracy of angles measurement was established. To optimize pointing at a reflective mark, the design of the mark and the special bracket, which with the accuracy of not worse than 100, orientates the mark perpendicularly to the light beam of an electronic tachometer, was researched. The triple prism was also investigated, the relationship between height, diameter and reflection center was established. The design of a spherical reflector and a stand for laying runs with compensation of centering, reduction, and heights measurement of a device-reflector was developed. The construction of a bracket (vector) with two reflectors for the measurement work was developed. A three-dimensional model of an industrial object for optimal planning of places for fixing a geodetic basis and transition points of an electronic tacheometer was elaborated. Scientific novelty. The method of balancing forces in a geodetic tripod can be considered as the basis for the initiation of an automated centering of a device. Optical calculation of a triple prism can be used to determine a permanent of a geodetic device without measurements on the basis. The calculation of the optimal geodetic mark image provides unambiguous visibility and increases the accuracy of angular measurements. Practical significance. Using the developed method, it is possible with the help of any tacheometer to determine the spatial coordinates of an engineering construction with control and optimal accuracy.

  1. Baran P. I. Inzhenerna heodeziia. Kyiv: PAT «VIPOL», 2012, P. 618.
  2. Bihter Erol. Evaluation of High-Precision Sensors in Structural Monitoring. Sensors. 2010, DOI:10.3390/s101210803. https://doi.org/10.3390/s101210803
  3. Bolshakov V., Vasiutynskyi Y. Yu., Kliushyn E. B. y dr.].  Metody y prybory vysokotochnykh heodezycheskykh yzmerenyi v stroytelstve. Moscow: Nedra, 1976, P. 335.
  4. Borovyi V. O., Burachek V. Vysokotochni inzhenerno-heodezychni vymiriuvannia. Vinnytsia: TOV «Nilan-LTD», 2017, P. 236.
  5. Burak. K. Tekhnolohiia rozplanuvalnykh robit i vykonavchykh zniman z vykorystanniam TPS [Technology of lay-out works and executive survey using TPS]. Geodesy, Cartography, and Aerial Photography. 2011, issue 75, pp. 53–57.
  6. Chyzh I., Tymchyk H. S., Shysh T. O., Afonchyn N. B. Aberometriia optychnoi systemy oka liudyny. Kyiv: NTUU KPI, 2013, P. 292.
  7. DBN V.1.3-2:2010. Systema zabezpechennia tochnosti heometrychnykh parametriv u budivnytstvi. Heodezychni roboty u budivnytstvi, Chynnyi vid 01.09.2010. Kyiv: Minrehionbud Ukrainy, 2010, P. 49.
  8. DSTU-N B V.1.3-1:2009. Vykonannia vymiriuvan, rozrakhunok ta kontrol tochnosti heometrychnykh parametriv, Chynnyi vid 01.10.2010. Kyiv: Minrehionbud Ukrainy, 2010, P. 71.
  9. ISO 17123-1. Optics and optical instruments. Field procedures of testing geodetic and surveying instruments. Part 1: Teory. 2014.
  10. ISO 17123-5. Optics and optical instruments. Field procedures for testing geodetic and surveying instruments. Part 5: Total stations. 2018.
  11. Lambyn V. Yssledovanye osobennostei yzmerenyia rasstoianyi pry nabliudenyiakh na plenochnыe otrazhately. Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva [Modern achievements in geodetic science and industry]. 2011, no. 2 (22), pp. 119–123.
  12. Litynskyi V. O., Vivat A., Perii S., Litynskyi S. Sposib vymiriuvannia vzirtsevoho bazysa 2-ho rozriadu dlia etalonuvannia elektronnykh takheometriv. Geodesy, Cartography, and Aerial Photography. Lviv 2015, issue 81, pp. 59–65.
  13. LEICA ABSOLUTE TRACKER AT960 2014. Available at: https://metrology.leica-geosystems.com/downloads123/m1/metrology/general/brochures/Leica%20AT960%20brochure_ru.pdf.
  14. Perii S. S. et al. Vyznachennia intervaliv etalonnoho Berezhanskoho bazysa metodom fotofiksatsii. Naukovyi visnyk Uzhhorodskoho universytetu. issue 3. Seriia heohrafiia i zemleustrii. Pryrodokorystuvannia. 2014, p. 93–95.
  15. Romanyshyn I., Malitskyi A., Lozynskyi V. Klasyfikatsiia ta osnovni kharakterystyky nazemnykh 3D-skaneriv. Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva [Modern achievements in geodetic science and industry]. 2012, issue II(24), pp. 69–74.
  16. Rusynom M. M. Habarytnыe raschetы optycheskykh system. Moscow: HOSHEOLTEKhYZDAT, 1963, P. 397.
  17. Vivat. A. I., Litynskyi V., Litynskyi S. Tochnist vyznachennia polozhennia tochok metodom obernenoi zasichky. Mizhnarodna naukova konferentsiia «Inowacyjne technologie geodezyjne». Zheshuv, Poland, 10–12 June 2015.
  18. Vivat. A. I., Litynskyi V., Litynskyi S. Metodyka stvorennia opornoi merezhi dlia zabezpechennia budivnytstva sporud ta sposterezhen za yikhnimy deformatsiiamy. Mizhnarodna naukovo-tekhnichna konferentsiia Heoforum. Zb. nauk. pr. Lviv, 2016.
  19. Voitenko S., Shults R., Voitenko S. Heodezychne zabezpechennia vlashtuvannia pokrivli NSK «Olimpiiskyi, Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva [Modern achievements in geodetic science and industry]. 2010, no. 1 (19, pp. 185–192.
  20. Werner Lienhart. Geotechnical monitoring using total stations and laser scanners. J Civil Struct Health Monit, 7, 2017, pp. 315–324, DOI 10.1007/s13349-017-0228-5. https://doi.org/10.1007/s13349-017-0228-5