Synthesis and Selfassambling of Amphiphilic Oligoesters Based on Pyromellitic Acid

2016;
: pp. 159 – 172
Authors: 
Ihor Tarnavchyk, Andriy Voronov, Volodymyr Donchak, Olga Budishevska, Olena Kudina, Olena Khomenko, Khrystyna Harhay, Volodymyr Samaryk and Stanislav Voronov

Ihor Tarnavchyk-1, Andriy Voronov-1, Volodymyr Donchak-2, Olga Budishevska-2, Olena Kudina-1, Olena Khomenko-2, Khrystyna Harhay-2, Volodymyr Samaryk-2 and Stanislav Voronov-2

  1. North Dakota State University, Dept. 2760, P.O. Box 6050, Fargo, ND 58108-6050, USA; andriy.voronov@ndsu.edu
  2. Lviv Polytechnic National University; 12, S. Bandery str., 79013 Lviv, Ukraine; donchak@polynet.lviv.ua

The method for synthesis of a new class of amphiphilic oligoesters of pyromellitic acid is developed. As hydrophilic fragments polyethylene glycols or polyethylene glycol mono methyl ethers were used, as lipophilic ones – primary fatty alcohols or cholesterol. The structure of the synthesized oligoesters was confirmed by IR- and PMR-spectroscopy. The oligoesters could solubilize water-insoluble substances, for example such effective antitumor lipophilic drug as curcumin. The high solubilization capacity of the OEPA assemblies and their biodegradability, as well as other properties (size distribution, ζ-potential) make the oligoesters considered as promising materials for the design of drug delivery systems.

[1] Huh K., Min H., Lee S. et al.: J. Controlled Release, 2008, 126, 122.
[2] Konno T., Watanabe J. and Ishihara K.: J. Biomed. Mat. Res., 2002, 65A, 210.
[3] Kim S., Kim D., Shim Y. et al.: J. Controlled Release, 2001, 72, 191.
[4] Desai N., Trieu V., Hwang L. et al.: Anti-Cancer Drugs, 2008, 19, 899.
[5] Wu J., Liu Q. and Lee R.: Int. J. Pharm., 2006, 316, 148.
[6] Litzinger D. and Huang L.: Biochirn. Biophys. Acta, 1992, 1113, 201.
[7] Klok H., Hwang J., Iyer S. et al.: Macromolecules, 2002, 35, 746.
[8] Heino S., Lusa S., Somerharjju P. et al.: Proc. Natl. Acad. Sci. USA, 2000, 97, 8375.
[9] Klausen T., Hougaard C., Hoffmann E. and Pedersen S.: Am. J. Physiol. Cell Physiol., 2006, 291, 757.
[10] Levitan I., Christian A., Tulenko T. and Rothblat G.: J. Gen. Physiol., 2000, 115, 405.
[11] Maxfield F. and Tabas I.: Nature, 2005, 438, 612.
[12] Ringsdorf H., Schlarb B. and Venzmer J.: Angew. Chem. Int. Ed., 1988, 27, 113.
[13] Zhou Y., Briand V., Sharma N. et al.: Materials, 2009, 2, 636.
[14] Shibaev V., Plate N. and Freidzon Ya.: J. Polym. Sci., 1979, 17, 1655.
[15] Shibaev V., Tal’roze R., Karakhanova F. and Plate N.: J. Polym. Sci., 1979, 17, 1671.
[16] Yamaguchi T. and Asada T.: Macromolecules, 1989, 22, 1141.
[17] Yusa S.: Int. J. Polym. Sci., 2012, 2012, 1.
[18] Knop K., Hoogenboom R., Fischer D. and Schubert U.: Angew. Chem. Int. Ed. 2010, 49, 6288.
[19] Borshenko V. and Mahijanov H.: Piromellitoviy Dianhidryd, Polucenie i Primenenie. CNIITEneftehim, Мoskva 1974.
[20] Waysberger A., Proskauer E., Riddik J. and Tups E.: Organicheskie Rastvoriteli. Inostrannaja literatura, Moskva 1958.
[21] Milas N. and Surgenor D.: J. Am. Chem. Soc. 1946, 68, 642.
[22] Antonovskiy V. and Buzlanova М.: Analityceskaya Khimiya Organicheskih Peroksidnyh Soedineniy. Khimiya, Мoskva 1978.
[23] Schmitz C., Mourran A., Keul H. and Möller M.: Macromol. Chem. Phys., 2008, 209, 1859.
[24] Wilhelm M., Zhao C., Wang Y. et al.: Macromolecules, 1991, 24, 1033.
[25] Praill P.: Acylation Reactions: their Applications and Mechanisms. Macmillan, New-York 1963.
[26] Emanuel N. and Knorre D.: Kurs Khimiceskoi Kinetiki. Vysshaya shkola, Мoskva 1974.
[27] Antonovskiy V.: Organicheskie Perekisnye Iniciatory. Khimiya, Мoskva 1972.
[28] Stetsyshyn Y., Kostruba A., Harhay K. et al.: Appl. Surf. Sci., 2015, 347, 299.
[29] Griffin W.: J. Soc. Cosmet. Chem., 1949, 1, 311.
[30] Kumar A., Ahuja A., Ali J. and Baboota S.: Crit. Rev. Ther. Drug., 2010, 27, 279.
[31] Lo L., Lin K., Huang C. and Hsiue G.: Adv. Funct. Mater. 2006, 16, 2309.