Berry phase appearance in deformed indium antimonide and gallium antimonide whiskers

: pp. 22-27
Lviv Polytechnic National University, International Laboratory of High Magnetic Fields and Low Temperatures
Lviv Polytechnic National University
Lviv Polytechnic National University, International Laboratory of High Magnetic Fields and Low Temperatures
Lviv Polytechnic National University

The influence of deformation on magnetoresistance features in indium antimonide and gallium antimonide whiskers of n-type conductivity with different doping concentration in the vicinity to the metal-insulator transition (MIT) was investigated in the temperature range 4.2 – 50 K and the magnetic field 0 – 14 T. The Shubnikov-de Haas oscillations in the whole range of magnetic field inductions were shown in deformed and undeformed whiskers. The amplitude of the magnetoresistance oscillations for both type of samples decreases in accordance with the increase in temperature. Berry phase existence under deformation influence was also revealed at low temperatures in the indium antimonide and galium antimonide whiskers, that indicates their transition into the state of topological insulators.

  1. A. F. Silva, A.Levine, Z. S.Momtaz, H.Boudinov, and B. E.Sernelius, “Magnetoresistance of doped silicon”, Physical Review B, 91(21), 214414, 2015.
  2. A. A.Druzhinin, I. I.Maryamova, O. P.Kutrakov, N. S.Liakh-Kaguy, and T.Palewski, “Strain induced effects in p-type silicon whiskers at low temperatures”, Functional materials, 19(3), pp. 325-329, 2012 .
  3. A. A.Druzhinin, I. P. Ostrovskii, Y. M. Khoverko, N. S. Liakh-Kaguj, and I. R. Kogut, “Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures”, Materials science in semiconductor processing, 14(1), pp. 18-22, 2011.
  4. L.Wang, L. Zhang, L.Yue, D.Liang, X.Chen, Y .Li, end S.Wang, “Novel dilute bismide, epitaxy, physical properties and device application”, Crystals, 7(3), p. 63, 2017.
  5. P.Chang, X.Liu, L.Zeng, K.Wei, and G. Du, “Investigation of hole mobility in strained InSb ultrathin body pMOSFETs”, IEEE Transactions on Electron Devices, 62(3), pp. 947-954, 2015.
  6. B. R. Bennett, M. G.Ancona, J. B.Boos, and Shanabrook, B. V. (2007). Mobility enhancement in strained p-In Ga Sb quantum wells. Applied Physics Letters, 91(4), 042104.
  7. A.Druzhinin, I.Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Negative magnetoresistance in indium antimonide whiskers doped with tin”, Low Temperature Physics, 42(6), pp. 453-457, 2016.
  8. S. Ishida, K.Takeda, A.Okamoto, and I.Shibasaki, “Effect of hetero‐interface on weak localization in InSb thin film layers”, Physica status solidi (c), 2(8), pp. 3067-3071, 2005.
  9. K. Imamura, , K. Haruna, and I. Ohno, “Carrier Concentration Dependence of Negative Longitudinal Magnetoresistance for n-InSb at 77 K”, Japanese Journal of Applied Physics, 19(3), p. 495, 1980.
  10. A. V.Kochura, B. A. Aronzon, M.Alam, A. Lashkul, S. F. Marenkin, M. A.Shakhov, and E. Lahderanta, “Magnetoresistance and anomalous hall effect of InSb doped with Mn”, Journal of Nano-and Electronic Physics, (5,no.4 (1)), 04015-1–04015-6, 2013.
  11. S. Gardelis, J. Androulakis, Z.Viskadourakis, E. L. Papadopoulou, J. Giapintzakis, S. Rai, and S. B.Roy, “Negative giant longitudinal magnetoresistance in Ni Mn Sb∕ In Sb: Interface effect”, Physical Review B, 74(21), 214427, 2006.
  12. A.Druzhinin, I.Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Quantization in magnetoresistance of strained InSb whiskers”, Low Temperature Physics, 45(5), pp. 513-517, 2019.
  13. A.Druzhinin, I.Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, I. Khytruk, and K. Rogacki, “Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures”, Materials Research Bulletin, 72, pp. 324-330, 2015.
  14. A. Druzhinin, I. Bolshakova, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Low temperature magnetoresistance of InSb whiskers”, Materials Science in Semiconductor Processing, no. 40, pp. 550-555, 2015.
  15. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Low-temperature magnetoresistance of GaSb whiskers”, Low Temperature Physics, 43(6), pp. 692-698, 2017.
  16. I. Khytruk, A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, and K. Rogacki, “Properties of doped GaSb whiskers at low temperatures”, Nanoscale research letters, 12(1),p. 156, 2017.
  17. H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C.Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, „Detection of Berry’s phase in a bulk Rashba semiconductor”, Science342(6165), pp. 1490-1493, 2013.
  18. M.Veldhorst, M. Snelder, M. Hoek, C. G.Molenaar, D. P. Leusink, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, “Magnetotransport and induced superconductivity in Bi based three dimensional topological insulators”,  Physica status solidi (RRL)–Rapid Research Letters, 7(12), pp. 26-38, 2013.
  19. W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou, and Y. Yao, “First-principles investigations on the berry phase effect in spin–orbit coupling materials”, Computational Materials Science, no. 112, pp. 428-447, 2016.
  20. A.Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, and A. Lukyanchenko, (2018). Spin-orbit interaction in InSb core-shell wires. Molecular Crystals and Liquid Crystals, 674(1), pp. 1-10, 2018.
  21. V. R. Kishore, B. Partoens, and F. M. Peeters, “Electronic structure of InAs/GaSb core-shell nanowires”, Physical Review B, 86(16), 165439, 2012.